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Abstract: There is a recent trend of applying multi-agent reinforcement learning
(MARL) to train an agent that can cooperate with humans in a zero-shot fashion
without using any human data. The typical workflow is to first repeatedly run
self-play (SP) to build a policy pool and then train the final adaptive policy against
this pool. A crucial limitation of this framework is that every policy in the pool is
optimized w.r.t. the environment reward function, which implicitly assumes that
the testing partners of the adaptive policy will be precisely optimizing the same
reward function as well. However, human objectives are often substantially biased
according to their own preferences, which can differ greatly from the environment
reward. We propose a more general framework, Hidden-Utility Self-Play (HSP),
which explicitly models human biases as hidden reward functions in the self-play
objective. By approximating the reward space as linear functions, HSP adopts an
effective technique to generate an augmented policy pool with biased policies. We
evaluate HSP on the Overcooked benchmark. Empirical results show that our HSP
method produces higher rewards than baselines when cooperating with learned
human models, manually scripted policies, and real humans. The HSP policy is
also rated as the most assistive policy based on human feedback.
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1 Introduction
Building intelligent agents that can interact with, cooperate and assist humans remains a long-standing
AI challenge with decades of research efforts [1, 2, 3]. Classical approaches are typically model-
based, which (repeatedly) build an effective behavior model over human data and plan with the
human model [4, 5, 6]. Despite great successes, this model-based paradigm requires an expensive and
time-consuming data collection process, which can be particularly problematic for complex problems
tackled by today’s AI techniques [7, 8] and may also suffer from privacy issues [9].

Recently, multi-agent reinforcement learning (MARL) has become a promising approach for many
challenging decision-making problems. Particularly in competitive settings, AIs developed by MARL
algorithms based on self-play (SP) defeated human professionals in a variety of domains [10, 11, 12].
This empirical evidence suggests a new direction of developing strong AIs that can directly cooperate
with humans in a similar “model-free” fashion, i.e., via self-play.

Different from zero-sum games, where simply adopting a Nash equilibrium strategy is sufficient,
an obvious issue when training cooperative agents by self-play is convention overfitting. Due to
the existence of a large number of possible optimal strategies in a cooperative game, SP-trained
agents can easily converge to a particular optimum and make decisions solely based on a specific
behavior pattern, i.e., convention [13, 14], of its co-trainers, leading to poor generalization ability
to unseen partners. To tackle this problem, recent works proposed a two-staged framework by first
developing a diverse policy pool consisting of multiple SP-trained policies, which possibly cover
different conventions, and then further training an adaptive policy against this policy pool [15, 16, 17].
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Despite the empirical success of this two-staged framework, a fundamental drawback exists. Even
though the policy pool prevents convention overfitting, each SP-trained policy in the pool remains a
solution, which is either optimal or sub-optimal, to a fixed reward function specified by the underlying
cooperative game. This implies a crucial generalization assumption that any test-time partner will be
precisely optimizing the specified game reward. Such an assumption results in a pitfall in the case
of cooperation with humans. Human behavior has been widely studied in cognitive science [18],
economics [19] and game theory [20]. Systematic research has shown that humans’ utility functions
can be substantially biased even when a clear objective is given [21, 22, 23, 24], suggesting that
human behaviors may be subject to an unknown reward function that is very different from the game
reward [25]. This fact reveals an algorithmic limitation of the existing SP-based methods.

In this work, we propose Hidden-Utility Self-Play (HSP), which extends the SP-based two-staged
framework to the assumption of biased humans. HSP explicitly models the human bias via an
additional hidden reward function in the self-play training objective. Solutions to such a generalized
formulation are capable of representing any non-adaptive human strategies. We further present a
tractable approximation of the hidden reward function space and perform a random search over this
approximated space when building the policy pool in the first stage. Hence, the enhanced pool can
capture a wide range of possible human biases beyond conventions [14, 17] and skill-levels [3] w.r.t.
the game reward. Accordingly, the final adaptive policy derived in the second phase can have a much
stronger adaptation capability to unseen humans.

We evaluate HSP in a popular human-AI cooperation benchmark, Overcooked [5], which is a
fully observable two-player cooperative game. We conduct comprehensive ablation studies and
comparisons with baselines that do not explicitly model human biases. Empirical results show that
HSP achieves superior performances when cooperating with behavior models learned from human
data. In addition, we also consider a collection of manually scripted biased strategies, which are
ensured to be sufficiently distinct from the policy pool, and HSP produces an even larger performance
improvement over the baselines. Finally, we conduct real human studies. Collected feedbacks show
that the human participants consistently feel that the agent trained by HSP is much more assistive
than the baselines.

2 Related Work

There is a broad literature on improving the zero-shot generalization ability of MARL agents to unseen
partners [26]. Particularly for cooperative games, this problem is often called ad hoc team play [27] or
zero-shot cooperation (ZSC) [14]. Since most existing methods are based on self-play [28, 29], how
to avoid convention overfitting becomes a critical challenge in ZSC. Representative works include
improved policy representation [30, 31], randomization over invariant game structures [14, 32],
population-based training [33, 34, 35] and belief modeling for partial observable settings [36, 37].
Fictitious co-play (FCP) [16] proposes a two-stage framework by first creating a pool of self-
play policies and their previous versions and then training an adaptive policy against them. Some
techniques improves the diversity of the policy pool [38, 39, 17, 15] for a stronger adaptive policy [40].

We follow the FCP framework and augment the policy pool with biased strategies. Notably, tech-
niques for learning a robust policy in competitive games, such as policy ensemble [41], adversarial
training [42] and double oracle [43], are complementary to our focus.

Building AIs that can cooperate with humans remains a fundamental challenge in AI [3]. A critical
issue is that humans can be systematically biased [23, 44]. Hence, great efforts have been made
to model human biases, such as irrationality [22, 6, 45], risk aversion [21, 24], and myopia [46].
Many popular models further assume humans have hidden subject utility functions [25, 47, 48, 49].
Conventional methods for human-AI collaboration require an accurate behavior model over human
data [2, 50, 51, 52], while we consider the setting of no human data. Hence, we explicitly model
human biases as a hidden utility function in the self-play objective to reflect possible human biases
beyond conventions w.r.t. optimal rewards. We prove that such a hidden-utility model can represent
any strategy of non-adaptive humans. Notably, it is also feasible to generalize our model to capture
higher cognitive hierarchies [53], which we leave as a future direction.
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We approximate the reward space by a linear function space over event-based features. Such a
linear representation is typical in inverse reinforcement learning [54], policy transfer [55], evolution
computing [56] and game theory [57, 58]. Event-based rewards are also widely adopted as a general
design principle in robot learning [59, 60, 61]. We perform randomization over feature weights
to produce diverse biased strategies. Similar ideas have been adopted in other settings, such as
generating adversaries [62], emergent team-formation [63], and searching for diverse Nash equilibria
in general-sum games [64]. In our implementation, we use multi-reward signals as an approximate
metric to filter out duplicated policies, which is inspired by the quality diversity method [65]. Lastly,
our final adaptive agent assumes a zero-shot setting without any data from its testing partner. This
can be further extended by allowing meta-adaptation at test time [66, 67, 68], which we leave as a
future direction.
3 Preliminary
Two-Player Human-AI Cooperative Game: A human-AI cooperative game is defined on a world
model, i.e., a two-player Markov decision process denoted by M = ⟨S,A, P,R⟩, with one player
with policy πA being an AI and the other with policy πH being a human. S is a set of world
states. A is a set of possible actions for each player. P is a transition function over states given the
actions from both players. R is a global reward function. A policy πi produces an action a

(i)
t ∈ A

given a world state st ∈ S at the time step t. We use the expected discounted return J(πA, πH) =

E
st,a

(i)
t

[∑
t γ

tR(st, a
(A)
t , a

(H)
t )

]
as the objective. Note that J(πH , πA) can be similarly defined,

and we use J(πA, πH) for conciseness without loss of generality. Let PH : Π → [0, 1] be the
unknown distribution of human policies. The goal is to find a policy πA that maximizes the expected
return with an unknown human, i.e., EπH∼PH

[J(πH , πA)]. In practice, many works construct or learn
a policy distribution P̂H to approximate real-world human behaviors, leading to an approximated
objective for πA, i.e., Eπ̂H∼P̂H

[J(πA, π̂H)].

Self-Play for Human-AI Cooperation: Self-play (SP) optimizes J(π1, π2) with two parametric
policies π1 and π2 and takes π1 as πA without use of human data. However, SP suffers from poor
generalization since SP converges to a specific optimum and overfits the resulting behavior convention.
Population-based training (PBT) improves SP by representing πi as a mixture of K individual policies
{π(k)

i }Kk=1 and runs cross-play between policies by optimizing the expected return [33, 34, 35]. PBT
can be further improved by adding a diversity bonus over the population [38, 39, 15].

Fictitious Co-Play (FCP): FCP [16] is a recent work on zero-shot human-AI cooperation with strong
empirical performances. FCP extends PBT via a two-stage framework. In the first stage, FCP trains
K individual policy pairs {(π(k)

1 , π
(k)
2 )}Kk=1 by optimizing J(π

(k)
1 , π

(k)
2 ) for each k. Each policy pair

(π
(k)
1 , π

(k)
2 ) may quickly converge to a distinct local optimum. Then FCP constructs a policy pool

Π2 = {π̃(k)
2 , π

(k)
2 }Kk=1 with two past versions of each converged SP policy π

(k)
2 , denoted by π̃

(k)
2 . In

the second stage, FCP constructs a human proxy distribution P̂H by randomly sampling from Π2 and
trains πA by optimizing Eπ̂H∼P̂H

[J(πA, π̂H)]. We remark that, for a better cooperation, the adaptive
policy πA should condition on the state-action history in an episode to infer the intention of its partner.
Individual SP policies ensure P̂H contains diverse conventions while using past versions enables P̂H

to cover different skill levels. So, the final policy πA can be forced to adapt to humans with unknown
conventions or sub-optimalities. Maximum Entropy Population-based Training (MEP) [17] is the
latest variant of FCP, which adopts the population entropy as a diversity bonus in the first stage to
improve the generalization of the learned πA.

4 Cooperating with Humans in Overcooked: A Motivating Example
Overcooked Game: Overcooked [5] is a fully observable two-player cooperative game developed
as a testbed for human-AI cooperation. In Overcooked, players cooperatively accomplish different
soup orders and serve the soups for rewards. Basic game items include onions, tomatoes, and dishes.
An agent can move in the game or “interact” to trigger some events, such as grabbing/putting an
item, serving soup, etc., depending on the game state. To finish an order, players should put a proper
amount of ingredients into the pot and cook for some time. Once a soup is finished, players should
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Figure 1: Layouts in Overcooked. From left to right are Asymmetric Advantages, Coordination
Ring, Counter Circuit, Distant Tomato and Many Orders respectively, with orders shown below.

pick up the soup with a dish and serve it to get a reward. Different orders have different cooking times
and different rewards. Fig. 1 demonstrates five layouts we consider, where the first three onion-only
layouts are adopted from [5], while the latter two, Distant Tomato and Many Orders, are newly
introduced to include tomato orders to make the problem more challenging: an AI needs to carefully
adapt its behavior to either cook onions or tomatoes according to the other player’s actions.

A Concrete Example of Human Preference: Fig. 2 illustrates a motivating example in Distant
Tomato (the 4th layout in Fig. 1). There are two orders: one requires three onions, and the other
requires three tomatoes. We run FCP on this multi-order scenario, and all the policies in the FCP
policy pool converge to the specific pattern of only cooking onion soup (Fig. 2a). Hence, the final
adaptive policy by FCP only learns to grab onions and cook onion soups. Cooking tomato soup is a
sub-optimal strategy that requires many extra moves, so the onion-only policy pool is exactly the
solution to the FCP self-play objective under the environment reward. However, it is particularly
reasonable for a human to dislike onions and accordingly only grab tomatoes in a game. To be an
assistive AI, the policy should adapt its strategy to follow the human preference for tomatoes. On the
contrary, as shown in Fig. 2b, the FCP policy completely ignores human moves for tomatoes and even
results in poor cooperation by producing valueless wrong orders of mixed onions and tomatoes. Thus,
to make an FCP agent human-assistive, the first-stage policy pool should not only contain optimal
strategies (i.e., onion soups) of different conventions but also cover diverse human preferences (e.g.,
tomatoes) even if these preferences are sub-optimal under the environment reward.

(a) FCP-FCP (b) FCP’s failure case when cooperating with a human player
Figure 2: Motivating example. (a) FCP converges to the optimal onion soup strategy. (b) A failure
case of FCP with a human partner: FCP agent corrupts the human’s plan of cooking tomato soups.

5 Methodology

We introduce a general formulation to model human preferences and develop a tractable learning
objective (Sec. 5.2). The algorithm, Hidden-Utility Self-Play (HSP), is summarized in Sec. 5.3.

5.1 Hidden-Utility Markov Game

The key insight from Sec. 4 is that humans may not truthfully behave under the environment reward.
Instead, humans are biased and driven by their own utility functions, which are formulated below.

Definition: A two-player hidden utility Markov game is defined as ⟨S,A, P,Rw, Rt⟩. ⟨S,A, P,Rt⟩
corresponds to the original game MDP with Rt being the task reward function. Rw denotes an
additional hidden reward function. There are two players, πa, whose goal is to maximize the task
reward Rt, and πw, whose goal is to maximize the hidden reward Rw. Rw is only visible to πw.

Let J(π1, π2|R) denote the expected return under reward R with a policy π1 and π2. During self-play,
πa optimizes J(πa, πw|Rt) while πw optimizes J(πa, πw|Rw). A solution policy profile (π∗

a, π
∗
w)

to the hidden utility Markov game is now defined by a Nash equilibrium (NE): J(π∗
a, π

∗
w|Rw) ≥

J(π∗
a, π

′
w|Rw),∀π′

w and J(π∗
a, π

∗
w|Rt) ≥ J(π′

a, π
∗
w|Rt),∀π′

a. □

Intuitively, with a suitable hidden reward function Rw, we can obtain any possible (non-adaptive and
consistent) human policy by solving the hidden-utility game induced by Rw.
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Lemma 5.1. Given an MDP M = ⟨S,A, P,Rt⟩, for any policy π : S × A → [0, 1], there
exists a hidden reward function Rw such that the two-player hidden utility Markov game M ′ =
⟨S,A, P,Rw, Rt⟩ has a Nash equilibrium (π∗

a, π
∗
w) where π∗

w = π.

Lemma 5.1 connects any human behavior to a hidden reward function. Then the objective of the
adaptive policy πA in Eq. (1) can be formulated under the hidden reward function space R as follows.

Theorem 5.1. For any ϵ > 0, there exists a mapping π̃w where π̃w(Rw) denotes the derived policy
π∗
w in the NE of the hidden utility Markov game Mw = ⟨S,A, P,Rw, Rt⟩ induced by Rw, and a

distribution PR : R → [0, 1] over the hidden reward space R, such that, for any adaptive policy
πA ∈ argmaxπ′ ERw∼PR

[J(π′, π̃w(Rw))], πA approximately maximizes the ground-truth objective
with at most an ϵ gap, i.e., EπH∼PH

[J(πA, πH)] ≥ maxπ′ EπH∼PH
[J(π′, πH)]− ϵ.

Theorem 5.1 indicates that it is possible to derive diverse human behaviors by properly designing
a hidden reward distribution P̂R, which can have a much lower intrinsic dimension than the policy
distribution. In Overcooked, human preferences can be typically described by a few features, such as
interaction with objects or certain type of game events, like finishing an order or delivering a soup.
By properly approximating the hidden reward distribution as P̂R, the learning objective becomes,

πA = argmax
π′

ERw∼P̂R
[J(π′, π̃w(Rw))] (1)

Eq. (1) naturally suggests a two-staged solution by first constructing a policy pool {π̃w(R) : R ∼ P̂R}
from P̂R and then training πA to maximize the game reward w.r.t. the induced pool.

5.2 Construct a Policy Pool of Diverse Preferences
Event-based Reward Function Space: The fundamental question is how to design a proper hidden
reward function space R. In general, a valid reward space is intractably large. Inspired by the fact that
human preferences are often event-centric, we formulate R as linear functions over event features,
namely R = {Rw : Rw(s, a1, a2) = ϕ(s, a1, a2)

Tw, ||w||∞ ≤ Cmax}. Cmax is a bound on the
feature weight w while ϕ : S ×A×A → Rm specifies occurrences of different game events when
taking joint action (a1, a2) at state s.

Derive a Diverse Set of Biased Policies: We simply perform a random search over the feature
weight w to derive a set of diverse behaviors. We first draw N samples {w(i)}i∈[N ] for the feature
weight w where w

(i)
j is sampled uniformly from a set of values Cj , leading to a set of hidden reward

functions {R(i)
w : R

(i)
w (s, a1, a2) = ϕ(s, a1, a2)

Tw(i)}i∈[N ]. For each hidden reward function R
(i)
w ,

we find an approximated NE, π(i)
w , π

(i)
a , of the hidden utility Markov game induced by R

(i)
w through

self-play. The above process produces a policy pool {π(i)
w }i∈[N ] that can cover a wide range of

behavior preferences.

Algorithm 1: Greedy Policy Selection
S ← {i0} where i0 ∼ [N ];
for i = 1→ K − 1 do

k′ ← argmaxk′ /∈S ED(S ∪ {k′});
S ← S ∪ {k′};

end

Policy Filtering: We notice that the derived pool of-
ten contains a lot of similar policies. This is because
the same policy can be optimal under a set of reward
functions, which is typical in multi-objective optimiza-
tion [69, 70]. Duplicated policies simply slow down
training without any help to learn πA. For more effi-
cient training, we adopt a behavior metric, i.e., event-based diversity, to only keep distinct ones
from the initial pool. For each biased policy π

(i)
w , let EC(i) denote the expected event count, i.e.

E[
∑T

t=1 ϕ(st, at)|π
(i)
w , π

(i)
a ]. We define event-based diversity for a subset S ⊆ [N ] by normalized

pairwise EC differences, i.e., ED(S) =
∑

i,j∈S

∑
k ck · |EC(i)

k − EC(j)
k |, where ck is a frequency

normalization constant. Finding a subset S∗ of size K with the optimal ED can be expensive. We
simply adopt a greedy method in Algo. 1 to select policies incrementally.

5.3 Hidden-Utility Self-Play
Given the filtered policy pool, we train the final adaptive policy πA over rollout games by πA and
randomly sampled policies from the pool, which completes our overall algorithm HSP in Algo. 2.

5



We implement HSP using MAPPO [29] as the RL algorithm. In the first stage, we use MLP policies
for fast SP convergence. In practice, we use half of the policy pool to train biased policies and the
other half to train MEP policies [17] under the game reward.

Algorithm 2: Hidden-Utility Self-Play
for i = 1→ N do

Train π
(i)
w and π

(i)
a under sampled R

(i)
w ;

end
Run Algo. 1 to only keep K policies;
Initial policy πA;
repeat

Rollout with πA and sampled π
(i)
w ;

Update πA;
until enough iterations;

This increases the overall pool towards the game re-
ward, leading to improved empirical performances. For
the final adaptive training, as suggested in [64], we
add the identity of each biased policy as an additional
feature to the critic. For event-based features for the
reward space, we consider event types, including inter-
actions with basic items and events causing non-zero
rewards in Overcooked. Full implementation details
can be found in Appendix D and E.

6 Experiments

Baselines. We compare HSP with other SP-based baselines, including Fictitious Co-Play (FCP),
Maximum Entropy Population-based training (MEP), and Trajectory Diversity-based PBT (TrajDiv).
All methods follow a two-stage framework with a final pool size of 36, which we empirically verified
to be sufficiently large for a fair comparison. The implementation details of baselines can be found in
Appendix D.2. Each policy is trained for 100M timesteps for convergence over 5 random seeds. Full
training details with hyper-parameter settings can be found in Appendix E.1.

Evaluation. We aim to examine whether HSP can cooperate well with (1) learned human models, (2)
scripted policies with strong preferences, and (3) real humans. We use both game reward and human
feedback as evaluation metrics. We remark that since a biased human player may play a sub-optimal
strategy, the game reward may not fully reflect the performance gap between the baselines and HSP.
Our goal is to ensure the learned policy is effective for biased partners/humans. Therefore, we
consider human feedback as the fundamental metric. In tables, all values within 5 standard deviations
of the maximum episode return are marked in bold. Full results can be found in Appendix F. Ablation
studies are also performed to investigate the impact of our design choices in HSP, which can be found
in Appendix F.2.

6.1 Cooperation with Learned Human Models in Onion-Only Layouts

For evaluation with learned human models, we adopted the models provided by [5], which only
support onion-only layouts, including Asymm. Adv., Coord. Ring and Counter Circ.. The results
are shown in Tab. 1. For a fair comparison, we reimplement all the baselines, labeled MEP, FCP,
and TrajDiv, with the same training steps and policy pool size as HSP. We additionally take the
best performance ever reported in the existing literature, labeled Existing SOTA in Tab. 1. Our
implementation achieves substantially higher scores than Existing SOTA when evaluated with the
same human proxy models. HSP further outperforms other reimplementations in Asymm. Adv. and
is comparable with the best baseline in the rest.

6.2 Cooperation with Scripted Policies with Strong Behavior Preferences

We empirically notice that human models learned by imitating the entire human trajectories cannot
well capture a wide range of behavior modalities. So, we manually designed a set of script policies to
encode some particular human preferences: Onion/Tomato Placement, which continuously places
onions or tomatoes into the pot, Onion/Dish Everywhere, which keeps putting onions or dishes on the
counters, Tomato/Onion Placement and Delivery, which puts tomatoes/onions into the pot in half
of the time and tries to deliver soup in the other half of the time. For a fair comparison, we ensure
that all scripted policies are strictly different from the HSP policy pool. More details about scripted
policies and a full evaluation can be found in Appendix D.3.
We remark that scripted policies are only used for evaluation but not for training HSP. Tab. 2
shows the average game reward of all the methods when paired with scripted policies, where HSP
significantly outperforms all baselines. In particular, in Distant Tomato, when cooperating with a
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Pos. Asymm. Adv. Coord. Ring Counter Circ.

Existing SOTA 1 141.1(12.5) 92.7(7.4) 54.5(2.3)

2 84.6(16.3) 107.3(6.4) 55.8(3.6)

FCP 1 282.8(9.4) 161.3(1.6) 95.9(2.0)

2 203.8(8.2) 161.0(2.7) 92.7(1.3)

MEP 1 291.7(4.6) 161.8(0.7) 108.8(4.2)

2 203.4(2.0) 164.2(2.1) 111.1(0.7)

TrajDiv 1 289.3(8.8) 150.8(3.1) 60.1(5.0)

2 194.2(0.7) 142.1(2.3) 53.7(12.4)

HSP 1 300.3(2.2) 160.0(2.6) 107.4(3.5)

2 217.1(3.3) 160.6(3.3) 106.6(3.0)

Table 1: Comparison of average episode reward and standard deviation when cooperating with learned
human models. The Pos. column indicates the roles played by AI policies. Existing SOTA is the best
performance ever reported in the existing literature. HSP achieves substantially higher scores than
Existing SOTA. And HSP further outperforms other methods in Asymm. Adv. and is comparable
with the best baseline in the rest.

Scripts FCP MEP TrajDiv HSP

Asymm. Adv. Onion Placement 334.8(13.0) 330.5(14.2) 323.6(17.0) 376.8(9.9)

Onion Place.&Delivery 297.7(3.4) 298.5(3.4) 290.0(4.7) 300.1(4.1)

Coord. Ring Onion Everywhere 109.1(7.9) 124.0(3.4) 116.9(8.9) 121.2(12.6)

Dish Everywhere 94.4(3.8) 100.2(5.3) 107.3(5.3) 115.4(7.4)

Counter Circ. Onion Everywhere 63.7(9.2) 88.9(5.1) 82.0(12.8) 107.5(3.5)

Dish Everywhere 57.0(5.3) 53.0(1.8) 57.2(2.2) 78.5(4.1)

Distant Tomato Tomato Placement 15.6(5.2) 20.1(10.6) 23.3(9.5) 277.9(14.3)

Tomato Place.&Delivery 177.9(6.1) 180.4(8.7) 164.8(19.6) 234.6(15.1)

Many Orders Tomato Placement 282.6(16.2) 225.8(60.8) 259.2(7.9) 317.8(9.3)

Tomato Place.&Delivery 329.1(5.3) 328.1(12.6) 295.7(2.4) 324.5(3.9)

Table 2: Average episode reward and standard deviation with unseen testing scripted policies. HSP
significantly outperforms all baselines.

strong tomato preference policy (Tomato Placement), HSP achieves a 10× higher score than other
baselines, suggesting that the tomato-preferred behavior is well captured by HSP.

6.3 Cooperation with Human Participants

We invited 60 volunteers (28.6% female, 71.4% male; median age between 18–30) and divided them
into 5 groups for 5 layouts. Volunteers are fully aware of all their rights and experiments are approved
with the permission of the department. The experiment has two stages:

• Warm-up Stage: Participants could play the game freely to explore possible AI behaviors. They
are asked to rank AI policies according to the degree of assistance during free plays.

• Exploitation Stage: Participants are instructed to achieve a score as high as possible.

6.3.1 Results of the Warm-up Stage

Figure 3: Human preference
for partners (row over col-
umn) in the warm-up stage.

The warm-up stage is designed to test the performance of AI policies
in the face of diverse human preferences. Fig. 3 visualizes the human
preference for different methods reported in the warm-up stage. The
detailed calculation method can be found in Appendix F.4.3. HSP is
preferred by humans with a clear margin. Since humans can freely
explore any possible behavior, the results in Fig. 3 imply the strong
generalization capability of HSP. We also summarize feedback from
human participants in Appendix F.4.2.

6.3.2 Results of the Exploitation Stage
The exploitation stage is designed to test the scoring capability of different AIs. Note that it is
possible that a human player simply adapts to the AI strategy when instructed to have high scores.
So, in addition to final rewards, we also examine the emergent human-AI behaviors to measure the
human-AI cooperation level. The experiment layouts can be classified into two categories according
to whether the layout allows diverse behavior modes.
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(a) Onion-Only Layouts (b) Counter Circ.
Figure 4: (a) Average episode reward in onion-only layouts of different methods when paired with
humans in the exploitation stage. HSP has comparable performance with the baselines in Asymm.
Adv. and Coord. Ring, and is significantly better in the most complex Counter Circ. layout. (b) The
onion passing frequency in Counter Circ. shows that HSP is the most capable, among other baselines,
of passing onions via the counter, suggesting better capabilities to assist humans.

Onion-only Layouts: Fig. 4a shows the average reward in onion-only layouts for different methods
when paired with humans. Among these onion-only layouts, all methods have comparable episode
reward in simpler ones (Asymm. Adv. and Coord. Ring), while HSP is significantly better in the
most complex Counter Circ. layout. Fig. 4b shows the frequency of successful onion passing between
the human player and the AI player. The learned HSP policy is able to use the middle counter for
passing onions, while the baseline policies are less capable of this strategy.

Layouts with Both Onions and Tomatoes:

• Distant Tomato: The optimal strategy is always cooking onion soups, while it is suboptimal to
cook tomato soups due to the much more time spent on moving. However, all learned baseline
policies tend to have a strong bias towards onions and often place onions into a pot with tomatoes
in it already. Tab. 3 reports the average number of such Wrong Placements made by different
AI players. HSP makes the lowest number of wrong placements and is the only method that
can correctly place additional tomatoes into a pot partially filled with tomatoes, labeled Correct
Placements. This suggests that HSP is the only effective method to cooperate with biased human
strategies, e.g., preferring tomatoes. In addition, as shown in Tab. 3, even when humans play the
optimal strategy of cooking onion soups, HSP still achieves comparable performance with other
methods.

• Many Orders: An effective strategy is to utilize all three pots to cook soups. Our experiments
found that baseline policies tend to ignore the middle pot. Tab. 4 shows the average number of
soups picked up from the middle pot by different AI players. The learned HSP policy is much
more active in taking soups from the middle pot, leading to more soup deliveries. Furthermore,
HSP achieves a substantially higher episode reward than other methods, as shown in Tab. 4.

FCP MEP TrajDiv HSP

Onion-Preferred Episode Reward ↑ 343.65 325.08 334.73 340.3
Wrong Placements ↓ 0.37 0.41 0.38 0.21
Correct Placements ↑ 0.0 0.0 0.0 1.41

Table 3: Average onion-preferred episode reward and frequency of different emergent behaviors in
Distant Tomato during the exploitation stage. HSP makes the lowest number of wrong placements
and is the only method that can place tomatoes correctly.

FCP MEP TrajDiv HSP

Episode Reward ↑ 316.81 320.61 323.52 382.52
Number of Soups Picked Up from the Middle Pot ↑ 1.93 2.03 1.33 5.64

Table 4: Average episode reward and average number of picked-up soups from the middle pot by
different AI players in Many Orders during the exploitation stage. HSP achieves significantly better
performance and is much more active in taking soups from the middle pot than baselines.

7 Conclusion
We developed Hidden-Utility Self-Play (HSP) to tackle the problem of zero-shot human-AI cooper-
ation by explicitly modeling human biases as an additional reward function in self-play. HSP first
generates a pool of diverse strategies and then trains an adaptive policy accordingly. Experiments
verified that agents trained by HSP are more assistive for humans than baselines in Overcooked.
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We would suggest to visit https://sites.google.com/view/hsp-corl for more information.

A Theorem Proofs

For simplicity, we assume state space and action space in our analysis are both discrete and finite,
which is exactly the case for Overcooked, and the rewards r are bounded: |r(s, a)| ≤ Rmax,∀s ∈
S, a ∈ A.

Lemma 5.1. Given an MDP M = ⟨S,A, P,Rt⟩, for any policy πw : S × A → [0, 1], there
exists a hidden reward function Rw such that the two-player hidden utility Markov game M ′ =
⟨S,A, P,Rw, Rt⟩ has a Nash equilibrium (π∗

a, π
∗
w) where π∗

w = πw.

Proof. Our analysis is based on the maximum entropy reinforcement learning framework [? ? ?
]. Given a reward function R and policies of the two players π1 and π2, we consider following
maximum entropy RL objective for policy πi(1 ≤ i ≤ 2),

Ji(π1, π2|R) = Eτ

[∑
t

γt(R(st, a
(1)
t , a

(2)
t ) + αH(πi(·|st)))

∣∣∣a(i)t ∼ πi(·|st)

]

We shall first constructs πa given policy πw to satisfy J2(πw, πa|Rt) ≥ J2(πw, π
′
a|Rt),∀π′

a and
secondly constructs Rw such that J1(πw, πa|Rw) ≥ J1(π

′
w, πa|Rw),∀π′

w is satisfied.

Step 1: Construct πa given πw.

Given πw, let πa ∈ argmaxπ J2(πw, π|Rt).

Step 2: Construct Rw such that J1(πw, πa|Rw) ≥ J1(π
′
w, πa|Rw),∀π′

w is satisfied given πw and
πa.

Given a fixed partner πa, by regarding πa as part of the environment dynamics, we could consider
the dynamics for πw in a single-agent MDP M ′ = ⟨S,A, P ′, Rw, γ⟩ where S is the state space, A is
the action space, P ′ denotes the transition probability and Rw is the reward function to construct.
More specifically, P ′ is defined as,

P ′(s′|s, a) =
∑
ã

P (s′|s, a, ã) · πa(ã|s) (2)

In M ′, given reward Rw, the objective of πw becomes,

max
π

Eτ

[∑
t

γt(Rw(st, at) + αH(π(st)))
∣∣∣at ∼ π(st)

]
(3)

The value function and the Q function could be defined as,

V (s) = Eτ

[∑
t

γt(Rw(st, at) + αH(πw(st)))
∣∣∣at ∼ πw(st), s0 = s

]
(4)

=
∑
a

πw(a|s)(Rw(s, a) + γEs′ [V (s′)|s, a]) + αH(πw(s)) (5)

Q(s, a) = Rw(s, a) + γ · Es′ [V (s′)|s, a] (6)

It is sufficient to construct Rw such that V (s) is a stable point of the Bellman backup operator [? ]
T ∗ under some Rw:

(T ∗V )(s) = max
d:
∑

a d(a)=1
αH(d) +

∑
a

d(a)(Rw(s, a) + γEs′ [V (s′)|s, a]) (7)

Now we assume V (s) is a stable point for Eq. 7 and construct Rw. For all s ∈ S, πw(·|s) should be
a solution to the following maximization problem,
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max
d

αH(d) +
∑
a

d(a)Q(s, a) (8)

s.t.
∑
a

d(a) = 1 (9)

Applying KKT conditions over the above optimization problem indicates that,

πw(·|s) ∝ exp(Q(s, ·)/α),∀s (10)

Let π∗
w(s) = argmaxa πw(a|s), V ∗(s) = maxa Q(s, a), A(s, a) = Q(s, a) − V ∗(s). By Eq. 10,

we also have

A(s, a) = α(log πw(a|s)− log πw(π
∗
w(s)|s)) (11)

By definition of value function V (s),

V (s) =
∑
a

πw(a|s)Q(s, a) + αH(πw(s)) (12)

=
∑
a

πw(a|s)(A(s, a) + V ∗(s)) + αH(πw(s)) (13)

=
∑
a

πw(a|s)A(s, a) + V ∗(s) + αH(πw(s)) (14)

=
∑
a

πw(a|s)A(s, a) +Rw(s, π
∗
w(s)) + γEs′ [V (s′)|s′ ∼ P ′(s, π∗

w(s))] + αH(πw(s))

(15)

= Eτ

[∑
t

γt

(∑
a′

πw(a
′|s)A(s, a′) +Rw(st, at) + αH(πw(st))

)∣∣∣at = π∗
w(st)

]
(16)

Let b(s) = Rw(s, π
∗
w(s)). Then V (s) is determined given πw and b,

V (s) = Eτ

[∑
t

γt

(∑
a′

πw(a
′|s)A(s, a′) + b(st) + αH(πw(st))

)∣∣∣at = π∗
w(st)

]
(17)

By A(s, a) = α(log πw(a|s)− log πw(π
∗
w(s)|s)) = Q(s, a)− V ∗(s),

α(log πw(a|s)− log πw(π
∗
w(s)|s)) = Rw(s, a) + γEs′ [V (s′)|s′ ∼ P ′(s, a)]− V ∗(s) (18)

Rw(s, a) = α log

(
πw(a|s)

πw(π∗
w(s)|s)

)
− γEs′ [V (s′)|s′ ∼ P ′(s, a)] + V ∗(s)

(19)

To summarize, for policy πw, we can construct a valid hidden reward function Rw via following
process,

1. Choose a function b : S ′ → R.

2. Compute A(s, a) by Eq. 11.

3. Compute V (s) and V ∗(s) by Eq. 17.

4. Construct Rw(s, a) by Rw(s, π
∗
w(s)) = b(s) and Eq. 19.

Now we show that, for any b : S ′ → R, under Rw constructed by the above process, V (s) is
a stable point of the Bellman backup operator T ∗. This is straightforward. First, constructed
Rw ensures that α(log πw(a|s) − log πw(π

∗
w(s)|s)) = Q(s, a) − V ∗(s) (Eq. 19) and therefore
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πw(a|w) ∝ exp(Q(s, a)/α), which means πw is a solution for the maximization problem 8. So

(T ∗V )(s) = max
d

αH(d) +
∑
a

d(a)(Rw(s, a) + γEs′ [V (s′)]) (20)

=
∑
a

πw(a|s)Q(s, a) + αH(πw(s)) = V (s). (21)

Theorem 5.1. For any ϵ > 0, there exists a mapping π̃w where π̃w(Rw) denotes the derived policy
π∗
w in the NE of the hidden utility Markov game Mw = ⟨S,A, P,Rw, Rt⟩ induced by Rw, and a

distribution PR : R → [0, 1] over the hidden reward space R, such that, for any adaptive policy
πA ∈ argmaxπ′ ERw∼PR

[J(π′, π̃w(Rw))], πA approximately maximizes the ground-truth objective
with at most an ϵ gap, i.e., EπH∼PH

[J(πA, πH)] ≥ maxπ′ EπH∼PH
[J(π′, πH)]− ϵ.

Proof. Let K(K > |A|) be a large positive integer. We construct a discretization of the policy space
Π by ΠK = {π : π(a|s) = i

K where i ∈ [K],∀s ∈ S, a ∈ A and
∑

a π(a|s) = 1,∀s ∈ S}. Note
that ΠK is finite, i.e. |ΠK | ≤ (K + 1)

|S|·|A|. Let M = |ΠK | and π1, π2, · · · , πM be an ordering of
the policies in ΠK . For simplicity of notation, let δ = |A|

K .

Given the discretization ΠK , it’s straightforward to specify the nearest policy π̂ ∈ ΠK for any policy
π ∈ Π. Formally, for any policy π ∈ Π, let G(π) = argmini=1,...,M

∑
s,a |π(a|s)− πi(a|s)|. An

obvious property of G is that, ∀s ∈ S, ||π(·|s)−G(π)(·|s)||∞ ≤ |A|
K = δ.

For two policies π1 and π2, consider π1 playing with π2 and G(π2) respectively. Since the action
distribution of π2 and G(π2) at each state differ at most δ, we have follows,

|J(π1, π2)− J(π1, G(π2))| ≤
∑
t

γt · (1− δ)t · δ · 2Rmax

1− γ
≤ 2δRmax

(1− γ)2
(22)

We can then derive a discretized approximation of the ground-truth policy distribution PH as follows,

P̂H(π) = Prπ′∼PH
[π = G(π′)] (23)

We could show that the difference between the objective under the ground-truth policy distribution
PH and that under the approximated policy distribution P̂H is bounded. By Eq. 22, for any adaptive
policy πA,∣∣EπH∼P̂H

[J(πA, πH)]− EπH∼PH
[J(πA, πH)]

∣∣ = ∣∣EπH∼PH
[J(πA, G(πH))− J(πA, πH)]

∣∣ (24)

≤ 2δRmax

(1− γ)2
(25)

On the other hand, consider following an iterative process to find hidden reward functions for policies
in ΠK . For i = 1..M , we find hidden reward function R

(i)
w where R

(i)
w /∈ {R(j)

w |1 ≤ j ≤ i− 1} and
R

(i)
w could be constructed from πi as in Lemma 5.1. Notice that, by construction rule in Lemma 5.1,

such R
(i)
w must exists since we can specify arbitrary b : S → R.

Let π̃w(R
(i)
w ) = πi,∀i = 1 . . .M and the hidden reward distribution PR be PR(R

(i)
w ) =

P̂H(πi),∀i = 1 · · ·M . We immediately see that, for any adaptive policy πA, the objective is
equivalent under the approximated policy distribution P̂H and hidden reward function distribution
PR,

ERw∼PR
[J(πA, π̃w(Rw))] = EπH∼P̂H

[J(πA, πH)] (26)

Finally, for any adaptive policy πA ∈ argmaxπ′ ERw∼PR
[J(π′, π̃w(Rw))] and any policy π′ ∈ Π,
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EπH∼PH
[J(πA, πH)] ≥ EπH∼P̂H

[J(πA, πH)]− 2δRmax

(1− γ)2
(27)

= ERw∼PR
[J(πA, π̃w(Rw))]−

2δRmax

(1− γ)2
(28)

≥ ERw∼PR
[J(π′, π̃w(Rw))]−

2δRmax

(1− γ)2
(29)

= EπH∼P̂H
[J(π′, πH)]− 2δRmax

(1− γ)2
(30)

≥ EπH∼PH
[J(π′, πH)]− 4δRmax

(1− γ)2
(31)

Let K ≥ 4|A|Rmax

ϵ(1−γ)2 and we have EπH∼PH
[J(πA, πH)] ≥ maxπ′ EπH∼PH

[J(π′, πH)]− ϵ.

B Environment Details

Figure 5: All 5 layouts used in our work (from left to right): Asymmetric Advantage, Coordination
Ring, Counter Circuit, Distant Tomato, and Many Orders, each featuring specific cooperation patterns
we want to study.

B.1 Description

The Overcooked Environment, first introduced in [5], is based on the popular video game Overcooked
where multiple players cooperate to finish as many orders as possible within a time limit. In this
simplified version of the original game, two chiefs, each controlled by a player (either human or AI),
work in grid-like layouts. Chiefs can move between non-table tiles and interact with table tiles by
picking up or placing objects. Ingredients (e.g., onions and tomatoes) and empty dishes can be picked
up from the corresponding dispenser tiles and placed on empty table tiles or into the pots. The typical
pipeline for completing an order is (1) players put appropriate ingredients into a pot; (2) a pot starts
cooking automatically once filled and takes a certain amount of time (depending on the recipe) to
finish; (3) a player harvests the cooked soup with an empty dish and deliver it to the serving area.

The observation for an agent includes the whole layout, items on the counter and pots, player
positions, orders, and time. The possible actions are up, down, left, right, no-op, and "interacting"
with the tile the player is facing. Reward is given to both agents upon successful soup delivery, with
the amount varying with the type of the soup. An episode of the game terminates when the time limit
is reached.

The environment used in [5] has only onions as ingredients and onion soups as orders. In our work,
we evaluate all methods in three of them, namely Asymmetric Advantage, Coordination Ring, and
Counter Circuit, each designed to enforce a specific cooperation pattern.

Our work introduces two new layouts: Distant Tomato and Many orders, with new ingredients and
order types to make cooperation more challenging. In Distant Tomato, a dish of onion soup takes 20
ticks to finish and gives 20 rewards when delivered, while a tomato soup takes 10 ticks and gives
the same reward but needs more movements to get the ingredient. The two players need to agree
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on which type of soup to cook in order to reach a high score. Failure in cooperation may result
in tomato-onion soups that give no reward. In many orders, there are three types of orders: onion,
tomato, and 1-onion-2-tomato. To fully utilize the three pots, the players need to work seamlessly in
filling not just the pots near each of them but also the pot in the middle.

We show all the layouts in Fig.5. and conclude the cooperation pattern of our interest as follows.

• Asymmetric Advantage tests whether the players can choose a strategy to their strengths.

• Coordination Ring requires the players not to block each other when traveling between the
two corners.

• Counter Circuit embeds a non-trivial but efficient strategy of passing onions through the
middle counter, which needs close cooperation.

• Distant Tomato and Many Orders both encourage the players to reach an agreement on the
fly in order to achieve a high reward.

B.2 Events

In Overcooked, we consider the following events for random search in HSP and reward shaping
during training of all methods:

• putting an onion/tomato/dish/soup on counter,

• picking up an onion/tomato/dish/soup from the counter,

• picking up an onion from onion dispenser,

• picking up a tomato from tomato dispenser,

• picking up a dish from dish dispenser,

• picking up a ready soup from the pot with a dish,

• placing an onion/tomato into the pot,

• valid placement: after the placement, we can finish an order with a positive reward by
placing other ingredients,

• optimal placement: the placement is optimal if the maximum order reward we can achieve
for this particular pot is not decreased after the placement,

• catastrophic placement: the placement is catastrophic if the maximum order reward we can
achieve for this particular pot decreases from positive to zero after the placement,

• useless placement: the placement is useless if the maximum order reward we can achieve
for this particular pot is already zero before the placement,

• useful dish pickup: picking up a dish is useful when there are no dishes on the counter, and
the number of dishes already taken by players is less than the total number of unready and
ready soups,

• delivering a soup to the serving area.

Additionally, in Distant Tomato, we consider the following events only for reward shaping,

• placing a tomato into an empty pot,

• optimal tomato placement: the placement is optimal and a tomato placement,

• useful tomato pickup: the agent picks up a tomato when the partner isn’t holding a tomato,
and there is a pot that is not full but only has tomatoes in it.
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C Overcooked Version

In our experiments, we use two versions of Overcooked for a fair comparison with prior works and
introduce challenging layouts. One version, in which we tested Asymmetric Advantages, Coordination
Ring and Counter Circuit, is consistent with the "neurips2019" branch in the released GitHub
repository of [5]. We remark that MEP [17] also follows this version. Following this also allows us
to perform an evaluation with human proxy models provided in the released code of [5]. The other
version is an up-to-date version of Overcooked, which supports tomatoes and user-defined orders.
We notice that a pot automatically starts cooking soup once there are three items in it in the former
version, while it requires an additional "interact" action to start cooking in the latter version. This
additional "interact" is required in the latter version since it supports orders with different amounts
of ingredients. However, having an additional "interact" significantly influences a human player’s
interactive experience. Therefore, we make modifications on the latter version to restrict orders to 3
items and support auto-cooking when there are 3 items. For more details, please refer to the released
code.

D Implementation Details

D.1 HSP

Algorithm 3: Hidden-Utility Self-Play
for i = 1 → N do

Train π
(i)
w and π

(i)
a under sampled R

(i)
w ;

end
Run greedy policy selection to only keep K policies;
Initial policy πA;
repeat

Rollout with πA and sampled π
(i)
w ;

Update πA;
until enough iterations;

The pseudocode of HSP is shown in Algo. 3. We implemented HSP on top of MAPPO [29]. Following
the standard practice, we use multiprocessing to collect trajectories in parallel and then update the
models. In the first stage, we use MLP policies, which empirically yield better results. In the
second stage, we use RNN policies so that the adaptive policy could infer the intention of its partner
by observing the history of its partner and make decisions accordingly for better adaptation. As
suggested in[64], we add the identities of the policies in the policy pool as an additional feature to
the critic. For better utilization of the computation resources, each environment sub-process loads
a uniformly sampled policy and performs inference on CPUs, while the inference of the adaptive
policy is batched across sub-processes in a GPU.

D.2 Baselines

For a fair comparison, we implement all baselines to be two-staged and train layout-specific agents.

We remark that our implementation of MEP achieves substantially higher scores than reported in the
original paper [17] when evaluated with the same human proxy models as MEP. All baselines are
implemented with techniques stated above: loading policies from the pool per sub-process and the
additional feature of identities of policies in the policy pool. We detail the baselines here and point
out the difference with the original papers,

FCP[16]: We list the differences between our implementation and the original FCP as follows,

1. The original FCP uses image-based egocentric observations, while we use feature-based
observations as provided in Overcooked.

2. The original FCP uses a pool size of 96 while we use 36. We empirically found 36 a
sufficiently large pool size in our experiments. As shown in Table 22, in the three layouts
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that have human proxy models, there is no significant difference between using a pool size
of 36 and of 72.

MEP[17]: We list the differences between our implementation and the original MEP as follows,

1. While the released code of MEP uses MLP policy in the second training stage, we found
RNN policy to work better. Intuitively, for better cooperation, the adaptive policy should
infer the intention of its partner by observing the state-action history.

2. MEP uses a pool size of 15 while we use 36.

3. MEP uses prioritized sampling in the second stage, which favors weak policies in the pool,
while we adopt uniform sampling for MEP since we found prioritized sampling not helpful
with our carefully tuned implementation (shown in Table 5).

4. In the released code of MEP, the policy updates are performed on data against only one
policy from the pool, while we perform policy updates on data against many policies from
the pool. This avoids the update from being biased towards some specific policies.

Pos. Asy. Adv. Coor. Ring Coun. Circ.

Uniform Sampling 1 291.7(4.6) 161.8(0.7) 108.8(4.2)

2 203.4(2.0) 164.2(2.1) 111.1(0.7)

Prioritized Sampling 1 284.6(3.2) 161.2(1.4) 94.4(2.3)

2 218.8(2.4) 167(4.5) 99.8(1.8)

Table 5: Average episode reward and standard deviation (over 5 seeds) with different sampling
methods of MEP. The "1" and "2" indicates the roles played by AI policies.

TrajDiv[15]: While the original TrajDiv is tested in hand-crafted MDPs and Hanabi, we test TrajDiv
in Overcooked. Although [15] suggests training the adaptive policy and the policy pool together in a
single stage, we choose to follow MEP and FCP to have a two-staged design that trains the adaptive
policy in the second stage.

D.3 Scripted Policies

To evaluate all methods with policies that have strong preferences, we consider the following scripted
policies,

• Onion/Tomato/Dish Everywhere continuously tries to put onions, tomatoes or dishes over
the counter.

• Onion/Tomato Placement always tries to put onion or tomato into the pot.

• Delivery delivers a ready soup to the serving area whenever possible.

• Onion/Tomato Placement and Delivery puts tomatoes/onions into the pot in half of the time
and tries to deliver soup in the other half of the time.

For Counter Circuit, we additionally consider a scripted policy, named Onion to Middle Counter,
which keeps putting onions randomly over the counter in the middle of the layout.

Input to these scripted policies is the ground-truth state of the game, which is accessible via the game
simulator. When a scripted policy is unable to finish the event of its interest at some state, the scripted
policy would walk to a random empty grid. For example, Onion Placement would choose a random
walk when all pots are full. We ensure that these scripted policies are strictly different from policies
in the policy pool of HSP. For more details, please refer to the released code.

We also provide evidence to show scripted policies are sufficiently different from those in the training
pool. We use the expected event count of scripted and biased policies to support our claim. Recall
that expected event count for a pair of policy πa, πb is EC(πa, πb) = E[

∑T
t=1 ϕ(st, at)|πa, πb]. Let

πHSP be the HSP adaptive policy, {π(n)
w }n∈[N ] be the set of biased policies in the training pool, and
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Biased Scripted

Asymm. Adv. 0.56 0.85
Coord. Ring 0.59 0.72
Counter Circ. 0.56 0.73
Dist. Tomato 0.70 1.90
Many Orders 0.55 1.00

Table 6: The average event-based difference of biased and scripted policies respectively.

{π(m)
s }m∈M be the set of scripted policies. For convenience, let Π = {π(n)

w }n∈[N ] ∪{π(m)
s }m∈M be

the union of biased policies and scripted policies. For each policy π′ ∈ Π, we measure how close it is
to the rest policies in Π in the expected event count, i.e. the event-based difference EventDiffΠ(π′) =
minπ′′∈Π\{π′}

∑
k ck · |ECk(π

′, πHSP )− ECk(π
′′, πHSP )| where ck is a frequency normalization

constant. Then a large event-based difference indicates that π′ is sufficiently different from other
policies in Π. We calculate the event-based difference for all biased and scripted policies. Table. 6
reports the average event-based difference between biased and scripted policies, respectively. Scripted
policies consistently have a larger average event-based difference, indicating scripted policies are
sufficiently different from biased policies, which are used for training the HSP adaptive policy.

E Training Details

E.1 Hyperparameters

HSP and baselines are all two-staged solutions by first constructing a policy pool and then training an
adaptive policy πA to maximize the game reward w.r.t. the induced pool.

The network architecture in both two stages is composed of 3 convolution layers with max pooling.
Hyperparameters of these layers are listed in Table 7. Each layer is followed by a max pooling layer
with a kernel size of 2. For MLP policies, we add two linear layers after the convolution. For RNN
policies, we add a 1-layer GRU after the convolution and two linear layers after the GRU layer. The
hidden sizes for these linear layers and the GRU layer are all 64. We use ReLU as the activation
function between layers and LayerNorm after GRU and linear layers except the last one. The output
is a 6-dim vector denoting the categorical action distribution.

Common hyperparameters for all methods in 5 layouts are listed in Table 8 and Table 9. Specifically,
for MEP, we use the suggested hyperparameters from the original paper [17]. Detailed hyperparame-
ters of MEP are shown in Table 10, where population entropy coef. adjusts the importance of the
population entropy term. Detailed hyperparameters of TrajDiv are shown in Table 11, where traj.
gamma is the discounting factor used in local action kernel and diversity coef. adjusts the importance
of the diversity term. For each one of MEP, FCP and TrajDiv, we train 12 policies in the first stage
and, following the convention of MEP [17] and FCP [16], take the init/middle/final checkpoints for
each policy to build up the policy pool, leading to a pool size of 36. For HSP, we use a random search
to first train 36 biased policies and then filter out 18 biased policies from them. We then combine
these biased policies and past checkpoints of 6 policies in the policy pool of MEP to build up the
policy pool of HSP, again leading to a pool size of 36.

Layer Out Channels Kernel Size Stride Padding

1 32 3 1 1
2 64 3 1 1
3 32 3 1 1

Table 7: CNN feature extractor hyperparameters.

21



common hyperparameters value

entropy coef. 0.01
gradient clip norm 10.0

GAE lambda 0.95
gamma 0.99

value loss huber loss
huber delta 10.0

mini batch size batch size / mini-batch
optimizer Adam

optimizer epsilon 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

learning rate 5e-4
parallel environment threads 100

ppo epoch 15
environment steps 10M

episode length 400
reward shaping horizon 100M

Table 8: Common hyperparameters in the first stage.

E.2 Constructing the Policy Pool for HSP

To construct the policy pool for HSP, we perform a random search over possible hidden reward
functions. Each reward function is formulated as a linear function over the event-based features,
i.e. R = {Rw : Rw(s, a1, a2) = ϕ(s, a1, a2)

Tw, ||w||∞ ≤ Cmax} where ϕ : S × A × A → Rm

specifies occurrences of different events when taking joint action (a1, a2) at state s. To perform
random search, instead of directly sampling each wj from the section [−Cmax, Cmax], we sample
each wj from a set of possible values Cj . We detail the Cj for each event on each layout here. Tab. 12
shows Cj in Asymmetric Advantages, Coordination Ring and Counter Circuit. Tab. 13 and Tab. 14
show Cj in Distant Tomato and Many Orders respectively. A detailed description of the events is
shown in Sec. B.2. Note that in addition to events, we also include order reward as one element in a
random search.

To filter out duplicated policies, we define an event-based diversity for a subset S, i.e. ED(S) =∑
i,j∈S

∑
k ck · |EC(i)

k − EC(j)
k | where ECi

k is the expected number of occurrences of event type k

for biased policy π
(i)
w . The coefficient ck balances the importance of different kinds of events. We

simply set ck as a normalization constant, i.e. ck =
(
maxi∈[N ] EC(i)

k

)−1

.

E.3 Reward Shaping

We use reward shaping during training in all layouts, detailed as follows,

• In the first stage, the reward shaping for Asymmetric Advantages, Coordination Ring and
Counter Circuit is shown in Table. 15 and that for Distant Tomato and Many Orders is
shown in Table. 17. Note that we do not use reward shaping when training biased policies
for HSP in the first stage.

• In the second stage, the reward shaping for Asymmetric Advantages, Coordination Ring
and Counter Circuit is shown in Table. 16. Reward shaping for Many Orders is shown in
Table. 18 and that for Distant Tomato is shown in Table. 19. The factor of shaped reward
anneals from 1 to 0 during the whole course of training in all layouts except Distant Tomato,
in which the factor anneals from 1 to 0.5.
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common hyperparameters value

entropy coef. 0.01
gradient clip norm 10.0

GAE lambda 0.95
gamma 0.99

value loss huber loss
huber delta 10.0

mini batch size batch size / mini-batch
optimizer Adam

optimizer epsilon 1e-5
weight decay 0

network initialization Orthogonal
use reward normalization True
use feature normalization True

learning rate 5e-4
parallel environment threads 300

ppo epoch 15
environment steps 100M

episode length 400
reward shaping horizon 100M

policy pool size 36
Table 9: Common hyperparameters in the second stage.

hyperparameters value

population entropy coef. 0.01
Table 10: MEP hyperparameters in the first stage.

F Full Results

F.1 Cooperation with Learned Human Models

Table 20 shows average episode reward and standard deviation (over 5 seeds) on 3 layouts for
different methods played with human proxy policies. All values within 5 standard deviations of the
maximum episode return are marked in bold. These three simple layouts may not fully reflect the
performance gap between the baselines and HSP. The results with learned human models are reported
for a fair comparison with existing SOTA methods. Besides, our implementation of the baselines
achieves substantially better results than their original papers with the same human proxy models,
making the improvement margin look smaller. We also remark that the learned human models have
limited representation power to imitate natural human behaviors that typically cover many behavior
modalities. Here we give empirical evidence of the learned human models failing to fully reflect
human behaviors.

F.1.1 Empirical Evidence

The original Overcooked paper [5] collected human-play trajectories. We then collect game tra-
jectories played by the learned human models and compare them with human-play trajectories by
measuring self-delivery ratio, i.e., the ratio of deliveries by the specific player to the total delivery
number in a trajectory, and self-cooking ratio, which is the ratio of onions that the player places in
the pot to the total pot placement number in a trajectory. The distributions of these trajectories are
demonstrated in Fig. 6. From the figure, we can observe that the learned human models can not fully
cover human behaviors. This suggests that evaluation results with the learned human models can not
provide a comprehensive comparison among different methods.
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hyperparameters value

traj. gamma 0.5
diversity coef. 0.1

Table 11: TrajDiv hyperparameters in the first stage.

Event Cj

Picking up an onion from onion dispenser -10, 0, 10
Picking up a dish from dish dispenser 0, 10
Picking up a ready soup from the pot -10, 0, 10

Placing an onion into the pot -10, 0, 10
Delivery -10, 0

Order reward 0, 1
Table 12: Cj for random search in Asymmetric Advantages, Coordination Ring and Counter Circuit.

(a) Asymm. Adv. (b) Coord. Ring (c) Counter Circ.

Figure 6: Trajectories induced by the learned human models and human players in Asymm. Adv.,
Coord. Ring and Counter Circ.. Each point or triangle denotes a trajectory with the X-axis coordinate
being the self-cooking ratio, which is the ratio of onions the player places in the pot to the total
amount of placements in the trajectory, and the Y-axis coordinate being the self-delivery ratio, which
is the ratio of deliveries given by the player to the total number of deliveries in the trajectory. Triangles
and points denote trajectories induced by human players and learned human models, respectively.
Different colors stand for different player indices. "BC" represents the learned human models and
"Human" denotes human players. Clearly, trajectories induced by the learned human models can not
fully cover those by human players.

F.2 Ablation Studies
We investigate the impact of our design choices, including the construction of the final policy pool,
the batch size for training the adaptive policy and the pool size.

F.2.1 Policy Pool Construction

HSP has two techniques for the policy pool, i.e., (1) policy filtering to remove duplicated biased
policies and (2) the use of MEP policies under the game reward for half of the pool size. We measure
the performance with human proxies by turning these options off. For “HSP w.o. Filtering”, we keep
all policies by random search in the policy pool, resulting in a larger pool size of 54 (18 MEP policies
and a total of 36 random search ones). For“HSP w.o. MEP”, we exclude MEP policies from the
policy pool and keep all biased policies without filtering, which leads to the same pool size of 36.
The results are shown in Table. 21.

By excluding MEP policies, the HSP variant (HSP w.o. MEP) performs worse in the more complicated
layout Counter Circ. while remaining comparable in the other two simpler ones. So we suggest
including a few MEP policies when possible. With policy filtering turned off, even though the policy
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Event Cj

Picking up an onion from onion dispenser -5, 0, 5
Picking up a tomato from tomato dispenser 0, 10, 20

Picking up a dish from dish dispenser 0, 10
Picking up a soup -5, 0, 5
Viable placement -10, 0, 10

Optimal placement -10, 0, 10
Catastrophic placement 0, 10

Placing an onion into the pot -10, 0, 10
Placing a tomato into the pot -10, 0, 10

Delivery -10, 0
Order reward 0, 1

Table 13: Cj for random search in Distant Tomato.

Event Cj

Picking up an onion from onion dispenser -5, 0, 5
Picking up a tomato from tomato dispenser 0, 10, 20

Picking up a dish from dish dispenser 0, 5
Picking up a soup -5, 0, 5
Viable placement -10, 0, 10

Optimal placement -10, 0
Catastrophic placement 0, 10

Placing an onion into the pot -3, 0, 3
Placing a tomato into the pot -3, 0, 3

Delivery -10, 0
Order reward 0, 1

Table 14: Cj for random search in Many Orders.

pool size grows, the performance significantly decays in both Coord. Ring and Counter Circ. layouts,
suggests that duplicated biased policies can hurt policy generalization.

F.2.2 Batch Size

We measure the training curves of the final adaptive policy under the game reward using different
numbers of parallel rollout threads in MAPPO. More parallel threads indicate a larger batch size.
The results in all five layouts are reported in Fig. 7. In general, we observe that a larger batch size
often leads to better training performance. In particular, when the batch size is small, i.e., using 50 or
100 parallel threads, training becomes significantly unstable and even breaks in three layouts. Note
that the biased policies in the HSP policy pool have particularly diverse behaviors, which cause a
high policy gradient variance when training the final adaptive policy. Therefore, a sufficiently large
training batch size can be critical to stable optimization. We adopt 300 parallel threads in all our
experiments for a fair comparison.

Figure 7: Average game reward by using different numbers of parallel rollout threads in MAPPO to
train the final adaptive policy. More parallel threads imply a larger training batch size.
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Event Value

Optimal placement 3
Picking up a dish from dish dispenser 3
Picking up a ready soup from the pot 5

Table 15: Reward shaping for Asymmetric Advantages, Coordination Ring and Counter Circuit in
the first stage.

Event Value

Optimal placement 3
Picking up a dish from dish dispenser 3
Picking up a ready soup from the pot 5

Table 16: Reward shaping for Asymmetric Advantages, Coordination Ring and Counter Circuit in
the second stage.

F.2.3 Pool Size

Table 22 shows average episode reward on 3 layouts with different sizes of the final policy pool for
training the adaptive policy. Since increasing the pool size to 72 gives little improvement as suggested
by the result, we use 36 in our experiments for computation efficiency.

F.3 Cooperation with Scripted Policies with Strong Behavior Preferences

Table 23 illustrates average episode reward and standard deviation (over 5 seeds) in all layouts with
scripted policies. All values within a difference of 5 from maximum value are marked in bold.

F.4 Human-AI Experiment

F.4.1 Experiment Setting

We invited 60 volunteers for human-AI experiment. We uniformly divide 60 volunteers into 5 groups,
each assigned to one layout. The experiment has two stages. In the first stage, which is called the
warm-up stage, the participants are encouraged to explore the behaviors of 4 given AI agents without
time limit. After the first stage, they are required to comment on their game experience, e.g., whether
the AI agents are cooperative and comfortable to play with, and rank the agents accordingly. In the
second stage, each participant is instructed to achieve as high score as they could in 24 games (4 AI
agents × 2 player positions × 3 repeats).

We remark that, on the environment side, different from human-AI experiments performed by prior
works [17, 5] in Overcooked, we slow down the AI agents so that the AI agents have similar speed
with human players. More specifically, 7 idle steps are inserted before each step of the AI agent. Such
an operation is necessary since in our prior user studies, we find that human players commonly feel
uncomfortable if the AI agent is much faster and human players could contribute little to the score.

F.4.2 Human Feedback

We collected and analyzed the feedback from the participants to see how they felt playing with AI
agents. Here we summarize the typical reflections.

1. In Coordination Ring, the most annoying thing reported is players blocking each other
during movement. To effectively maneuver in the ring-like layout, players must reach a
temporary agreement on either going clockwise or counterclockwise. HSP is the only AI
able to make way for the other player, while others can not recover by themselves once
stuck. For example, both FCP and TrajDiv players tend to take a plate and wait next to the
pot immediately after one pot is filled. But they can neither take a detour when blocked on
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Event Value

Picking up a dish from dish dispenser 3
Picking up a ready soup from the pot 5

Table 17: Reward shaping for Distant Tomato and Many Orders in the first stage.

Event Value

Picking up a dish from the dish dispenser 3
Picking up a ready soup from the pot 5

Table 18: Reward shaping for Many Orders in the second stage.

their way to the dish dispenser nor yield their position to the human player trying to pass
through.

2. In Counter Circuit, one efficient strategy is passing onion via the counter in the middle
of the room: a player at the bottom fetches onions and places them on the counter, while
another player at the top picks up the onions and puts them into pots. HSP is the only AI
player capable of this strategy in both top and bottom places.

3. In Distant Tomato, one critical thing is that mixed (onion-tomato) soups give no reward,
which means two players need to agree on the soup to cook. All AI agents perform well
when the other player focuses on onion soups. However, all AI agents except for HSP fail to
deal with tomato-preferring partners. FCP, MEP, or TrajDiv agents never actively choose
to place tomatoes and keep placing onions even when a pot has tomatoes in it, resulting in
invalid orders. On the contrary, HSP chooses to place tomatoes when there are tomatoes in
the pot. Participants commonly agree that the HSP agent is the best partner to play with in
this layout.

4. In Many Orders, most participants claim that HSP is able to pick up soups from all three
pots, while other AI agents only concentrate on the pot in front of them and ignore the
middle pot even if the human player attempts to use it.

F.4.3 Human Preference on Different AI Agents

Figure. 8 illustrates human preference on different AI agents. In all layouts except a relatively
restricted and simple layout, Coordination Ring, human players strongly prefer HSP over other AI
agents. In Coordination Ring, though human players rank MEP above HSP, HSP is still significantly
better than FCP and TrajDiv.

Calculation Method: Human preference for different methods is computed as follows. Assume we
are comparing human preference between method A and method B. Let N be the total number of
human players attending the experiments in one layout, NA be the number of human players who
rank A over B, and NB be the number of who rank B over A. "Human preference for method A over
method B" is computed as NA

N − NB

N .

(a) Asy. Adv. (b) Coor. Ring (c) Coun. Circ. (d) Dis. Toma. (e) Many Ord.
Figure 8: Human preference for row partner over column partner in all layouts.
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Event Value

Picking up a dish from the dish dispenser 3
Picking up a ready soup from the pot 5

Useful tomato pickup 10
Optimal tomato placement 5

Placing a tomato into an empty pot -15
Table 19: Reward shaping for Distant Tomato in the second stage.

F.4.4 Scores in the Second Stage

Table 24 shows average reward per episode during the second stage in all layouts. All methods have
comparable episode rewards in Asymm. Adv and Coord. Ring. There is no room for improvement
since all the methods have reached the highest possible rewards. In Counter Circ., the most complex
layout in this category, HSP achieves a better performance than baselines: HSP has a 155+ reward
while the most competitive baseline MEP has a reward of 134+. We remark that the reward difference
between HSP and MEP is around 20, which is exactly the value of 1 onion soup delivery. This implies
that the HSP agent can, on average, deliver one more soup than all the baselines per game episode
with humans, which is a significant improvement.
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Pos. Asy. Adv. Coor. R. Coun. Circ.

FCP 1 282.8(9.4) 161.3(1.6) 95.9(2.0)

2 203.8(8.2) 161.0(2.7) 92.7(1.3)

MEP 1 291.7(4.6) 161.8(0.7) 108.8(4.2)

2 203.4(2.0) 164.2(2.1) 111.1(0.7)

TrajDiv 1 289.3(8.8) 150.8(3.1) 60.1(5.0)

2 194.2(0.7) 142.1(2.3) 53.7(12.4)

HSP 1 300.3(2.2) 160.0(2.6) 107.4(3.5)

2 217.1(3.3) 160.6(3.3) 106.6(3.0)

Table 20: Average episode reward and standard deviation (over 5 seeds) on 3 layouts for different
methods played with human proxy policies. All values within 5 standard deviations of the maximum
episode return are marked in bold. The Pos. column indicates the roles played by AI policies.

Pos. Asy. Adv. Coor. R. Cou. Circ.

HSP w.o. MEP (pool size = 36) 1 308.5(4.4) 157.5(3.0) 94.0(2.7)

2 219.6(15.9) 157.7(2.5) 100.4(1.1)

HSP w.o. Filtering (pool size = 54) 1 311.3(8.1) 139.2(5.6) 80.1(4.6)

2 209.3(4.0) 138.5(3.1) 88.7(0.9)

HSP (pool size = 36) 1 300.3(2.2) 160.0(2.6) 107.4(3.5)

2 217.1(3.3) 160.6(3.3) 106.6(3.0)

Table 21: Average episode reward and standard deviation (over 5 seeds) on 3 layouts for different
methods played with human proxy policies. The Pos. column indicates the roles played by AI
policies.

Pos. Asy. Adv. Coor. R. Coun. Circ. Asy. Adv. Coor. R. Coun. Circ.
policy pool size = 36 policy pool size = 72

FCP 1 282.8(9.4) 161.3(1.6) 95.9(2.0) 278.3(16.0) 158.9(0.6) 91.9(7.5)

2 203.8(8.2) 161.0(2.7) 92.7(1.3) 200.9(13.2) 156.9(4.7) 90.7(4.8)

MEP 1 291.7(4.6) 161.8(0.7) 108.8(4.2) 298.2(5.4) 157.3(2.7) 104.6(5.0)

2 203.4(2.0) 164.2(2.1) 111.1(0.7) 207.8(7.3) 158.9(3.0) 105.0(2.2)

TrajDiv 1 289.3(8.8) 150.8(3.1) 60.1(5.0) 270.8(2.5) 142.5(2.8) 70.1(6.7)

2 194.2(0.7) 142.1(2.3) 53.7(12.4) 192.8(8.7) 137.3(4.9) 63.8(8.2)

Table 22: Average episode reward and standard deviation (over 5 seeds) on 3 layouts for different
methods played with human proxy policies. The Pos. column indicates the roles played by AI
policies.
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Pos. Asy. Adv. Coor. Ring Cou. Circ. Dis. Toma. Many Ord.

FCP 1 339.3(38.17) 185.0(19.73) 127.7(28.14) 351.3(82.25) 312.4(58.73)

2 321.3(34.80) 180.7(22.98) 118.3(29.20) 320.5(66.49) 321.3(61.12)

MEP 1 329.7(45.97) 193.3(22.11) 136.9(27.00) 341.9 (65.07) 322.0(50.53)

2 324.2(39.93) 183.6(26.75) 134.5(28.63) 313.9(78.29) 319.2(52.98)

TrajDiv 1 329.0(43.18) 184.7(28.60) 112.6(25.78) 327.1(71.04) 312.9(62.82)

2 318.8(48.97) 176.8(31.33) 105.0(31.05) 316.0(77.65) 334.2(57.99)

HSP 1 336.0(35.55) 185.5(38.92) 158.0(28.56) 331.6(61.33) 384.3(47.50)

2 318.8(48.97) 188.9(22.00) 155.2(23.43) 305.9(58.61) 380.7(62.27)

Table 24: Average reward per episode in all layouts with human players in the second stage.
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