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Abstract: Interacting in groups is common in our everyday lives. Social robots
have been shown to effectively support these group interactions. However, we still
lack knowledge on how we could build autonomous socially intelligent robots that
could support varying groups with varying needs in realistic interactions. In this
paper, we take the first step toward exploring autonomous and adaptive robots
for groups by exploring how we can model groups. The goal of the model is to
allow for the effective cloning of demonstrated behavior. We propose, to model
groups as graphs and to use Graph Neural Networks (GNN) to model the behavior
policy. We compare this modeling approach with a sequential neural network
with a long feature vector as an input. In a dataset in which teenagers demonstrate
how a social robot could support their small group education sessions, we show
that GNNs not only outperform the sequential neural networks but also use fewer
trainable parameters.

Keywords: Socially Intelligent Robots, Behavioral Cloning, Graph Neural Net-
works, Groups

1 Introduction

Humans interact in groups in various everyday situations. The interactions between group members
in groups can thereby be characterized by several key processes which we refer to as group dynam-
ics. Since positive group dynamics have been found to lead to more motivation, higher-performing
teams [1] and generalized trust [2], recent efforts have explored how robots shape interactions
among human group members and affect a group’s dynamics [3, 4, 5, 6, 7, 8].

In real-world environments, a social robot might need to interact with groups of varying sizes and
display complex behaviors to be effective. In addition, one key observation of this work is that
group interactions offer the robot multiple possibilities of ’who’ to address, for example, with a
specific question: ’What do you think?’ could be directed to one of the individual group members
or the whole group. Prior work has shown promising results in understanding different verbal and
non-verbal strategies to shape interaction dynamics. For that, most recent efforts focused on either
understanding ’what’ the robot should do to support group interactions, e.g. making vulnerable
statements [9] or using gaze [10]. Other works used for example the least active participants to
decide ’who to address [11, 4, 12]. However, these works are focusing on evaluating rule-based
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heuristics rather than how a robot could learn complex social behaviors that allow for autonomy in
groups with a variety of needs and characteristics.

In this work, we propose representing groups as graphs when developing socially intelligent robots
that need to decide ’who’ they should address in groups of potentially varying sizes. Fundamental
to our approach is the use of Graph Neural Networks (GNN). The GNN thereby uses the structure of
the group interaction inherent to the graph. This way, each group member (nodes) and the interaction
between group members (edges) can be modeled explicitly. The robot then uses the GNN to reason
with the help of the structure of the interaction to decide ’who’ to address for shaping the interaction
within the group. We argue that this explicit modeling of the group interaction is key to successfully
capturing the dynamics of the group and is important for deciding ’who’ should be addressed, for
example, to encourage them to tell their opinion.

We explore the use of GNNs for socially intelligent robots by using imitation learning, i.e. be-
havioral cloning. The used dataset provides interactions in which teenagers demonstrated how they
wanted a robot to support their small-group education sessions. Teenagers were interacting in groups
of three with the robot controlled by a fourth teenager. The robot acted as a facilitator and was, as
such, not part of solving the task within the educational session. The robot’s task instead was to
support the group interaction to allow for a ’better’ experience. It was left open to the teenagers as
experts about teenagers’ group interactions to decide what ’better’ meant to them.

The particular dataset used allows us to compare the modeling of the group as a graph to a standard
form of modeling interaction - through one single feature vector. In sum, our main contributions are:
(1) proposing to use graphs to model group interactions when developing socially intelligent robot
behaviors for shaping interactions in groups (2) demonstrating the effectiveness of modeling groups
as graphs as opposed to a single vector in a behavioral cloning task using Graph Neural Networks
(3) advancing the knowledge of creating socially intelligent robots for situated group interactions
through imitation learning.

2 Related Work

2.1 Robots in Groups

The study of robots and groups has gained importance within the field of HRI [13], including how
people perceive robots in groups and how they influence and facilitate group dynamics [3]. In
particular, robots have been shown to improve situations of conflict [7, 14] and emotional support
[15] and foster the expression of vulnerability [9] or perception of cohesion [6]. Further, prior work
has been interested in studying how robots could support the process of inclusion among adults [5],
and children [4, 16] or shape participation behavior [17, 11, 12].

2.2 Imitation Learning in HRI

The use of imitation learning (also often referred to as learning from demonstration in robotics
[18, 19]) has been demonstrated to learn robot policies for a variety of human-robot interaction sce-
narios. In particular, a common approach is to learn robot behaviors from expert human demonstra-
tions, such as in kinesthetic teaching of manipulation skills [20, 21]. Closer to our work, imitation
learning was used by Jain et al. [22] on a human-human conversation dataset to predict non-verbal
behaviors in a conversation, including back-channelling. Similarly to the work in kinesthetic teach-
ing, we use expert demonstrations that were collected by directly controlling the robot instead of a
human-human interaction dataset. However, we focus on modeling social interactions and learning
a socially intelligent behavior policy.
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2.3 Graph Neural Networks and HRI

Given the importance of Graph Neural Networks (GNN) to our approach, we will first provide back-
ground information about one form of GNNs: Message-passing Graph Neural Networks (MPNN).
At the end of this Section, we provide an overview on prior work that used GNNs.

Message-passing Graph Neural Networks [23] are composed of one or more Graph Network blocks
(GN blocks). A GN block takes as input a directed graph G and produces an updated graph G′.
Let G = (u,V,E), where u is a global attribute (or feature) for the graph, V = {vi}i=1:n are
attributes of the graph’s nodes, and E = {(ek, rk, sk)}k=1:m corresponds to the edges. Each ek
in E is an edge attribute with (rk, sk) being the corresponding indices of the receiver and sender
nodes. Then, a GN block operates in 3 steps, carrying strong relational inductive biases via spe-
cific architectural assumptions. First, the edge features are updated using an edge update function
ϕe, e′k = ϕe(ek,vrk ,vsk ,u). Second, the node features are updated. For example, for node i,
v′

i = ϕv(ē′i,vi,u) with ē′i = ρe→v({(e′k, rk, sk)}rk=i,k=1:m) being aggregate information from
all edges that have the node i as receiver. Third, the global feature u for the graph is updated
as u′ = ϕu(ē′, v̄′,u) using all the edges, ē′ = ρe→u({(e′k, rk, sk)}k=1:m), and node informa-
tion, v̄′ = ρv→u({v′

i}i=1:n). The update functions ϕe(·), ϕv(·), ϕu(·) and the aggregate functions
ρe→v(·), ρe→u, ρv→u(·) are differentiable functions. Importantly, the aggregate functions are often
implemented via symmetric mathematical functions, like element-wise averaging, because nodes
and edges in a graph typically lack a natural order.

GNNs have been previously used to model groups in HRI settings. For example, to generate poses
that are suitable to be perceived as being part of a group [24] or predict group behavior [25]. The
closest to our work is a classification task to predict back-channeling behavior in groups [26]. In this
work, the authors compare modeling individuals vs the joined group through graphs and GNNs. To
the best of our knowledge, there is no prior work that explores cloning non-physical, purely social
behaviors in group interactions through the use of GNNs.

3 Approach

In this section, we describe our method which involves representing groups through graphs and using
Graph Neural Networks to represent a socially intelligent behavior policy for the robot. The goal
of the behavior policy is to decide ’who’ should be addressed by the next action, e.g. when asking
’What do you think?’ the decision could be at ’whom’ to gaze to ensure the question is targeted at
the chosen addressee.

3.1 Problem formulation

A social robot aiming to shape group dynamics needs to perceive the group and its interaction
dynamics and be able to take an action that chooses whom to address to support the interaction.
Therefore, we pose the problem as a sequential decision-making problem. At any time-step t, the
robot’s environment is captured as a state variable st. The robot can choose an action at which
corresponds to choosing the ‘who’.

The robot’s goal is to then learn a policy π : st 7→ at that indicates which action a to take in a given
state s to most accurately clone the demonstrated behavior present in the dataset.

Human groups naturally occur in varying sizes. For instance, small groups of 2 or 3 people might
be common in the home [27] while robots might naturally take part in bigger groups interactions in
public environments [28] or educational settings [29]. Further, people might dynamically join and
leave human-robot groups [30, 31]. Therefore, the decision-making process described above needs
to be able to handle different group sizes and generalize to group sizes unseen during training. Note
that the given dataset does not allow the exploration of varying group sizes. However, the GNNs can
be applied to groups of varying sizes due to the nature of their components.
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Figure 1: Overview on the network architecture representing the GNN. Round shapes indicate input
to the networks. Rounded rectangular shapes represent the neural networks from which the GNN is
built. Sharped-edged rectangular shapes represent the outputs of these networks.
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3.2 Representations for state and actions

We focus on instances in the dataset in which a ‘who’ was selected. These decisions on ’who’
were, however, not provided continuously but at arbitrary time steps td chosen by the expert, the
teenager controlling the robot in the group interaction. We model the state std of a group human-
robot interaction as a graph G = (u, V,E), where each node v ∈ V represents one of the interacting
human group members. We denote human group members with pi ∈ P where pi represents one
human group member. The group member chosen as the addressee is referred to as pwho. Edges
eij ∈ E encode the relation between group members pi and pj . General information is captured in
the global graph attribute u of G. As the interaction is perceived at 2Hz, the representation at std
captures a time series of l time steps of perceived features. Capturing a time series of features allows
the behavior policy to reason over the development in a time window of the interaction rather than a
single glimpse at one moment in time.

This formulation is applicable to groups of various sizes, i.e., with 2 or more humans.1

We represent the actions that the robot takes as the available addresses within the interaction. In
addition, the robot can target the whole group.

3.3 Behavioral cloning with GNNs to predict addressees

We train the behavior policy using behavioral cloning [32]. That is, we used supervised learning to
map observed states std to actions atd given paired input-target data from the dataset. The dataset
will be further discussed in Section 4.1 We represent the behavior policy π(a, s) through a GNN.
Specifically, we are using Message-Passing GNNs as detailed in Section 2.3.

As illustrated in Figure 1, each node v is passed through two GNN layers resulting in the updated
node v′. To predict if person pi represented through updated node v′i is the chosen pwho, we use an
additional function representing the likelihood of pi being the chosen addressee pwho:

ϕpv(v
′) = p(v′ == pwho) (1)

Similarly, we predict based on the updated global graph attributed u′ the likelihood of the whole
group being the addressee with function ϕpu(u

′) == p(u′ == pwho).

We choose the highest likelihood among the participants pi represented through v′i and the whole
group represented through u′ as the chosen ‘who’ as action atd .

To accommodate the l time steps that represent each state std , functions ϕu, ϕv, ϕe, ϕpv, ϕpu are
represented through a Long Short Term Memory (LSTM) [33].

4 Experimental Set-up

4.1 Dataset of group-robot interactions

The goal of the dataset collection was to invite teenagers to demonstrate how a robot could enable
’better’ group interactions among a group of teenagers. In this sense, the teenagers were seen as
experts that could provide a unique demonstration of robot behaviors. Therefore, the dataset was
collected in an interaction among teenagers in which three teenagers worked on a discussion-based
task as common in small-group educational settings. The robot acted as a facilitator with the goal
of making the group interaction ’better’ and was controlled by a fourth teenager. This teenager
basically had the task to decide which robot action to take and whom to address with the action
to achieve the goal of a ’better’ group interaction. A fifth teenager was observing the interaction.
The interaction is visualized in Figure 2a. The teenagers demonstrated how the robot should act

1Also, our formulation generally assumes that there is a single robot in the interaction – but if there were
more, they would be added as nodes to the graph and would be treated as one more interactant by the robot
being controlled through π(a, s). Evaluating our approach in the latter setup is out of the scope of this paper.
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(a) The three teenagers without caps around the
table work on a discussion-based task. The Nao
robot acts as a facilitator and is controlled by the
teenager with cap on the left. The teenager with
the cap on the right acts as an observer.

Alfred

Lina

Thomas

(b) Tablet interface used to control the robot.
Teenagers designed the actions in the original
study.

Figure 2: Illustration of the data collection set up (a) and user interface to control the robot in (b).
Images used with permission of [34].

to support their group interactions by choosing the actions the robot should take on a tablet. The
interface used on the tablet is provided in Figure 2b. The dataset was kindly provided by Gillet et al.
[34] who conducted the original study and collected the dataset.

Size of the dataset The dataset contains 48 interactions of 15 minutes. During these 48 interactions,
16 teenagers rotated to either work on the group task or control the robot. Within these 48 interac-
tions, 2654 instances demonstrate the selection of an addressee. We use 10% of the dataset for
testing and 10% for validation. The majority of actions are directed toward the whole group. In the
training set, we up-sample the remaining actions to achieve a more equal distribution of addressees
during training.
Actions demonstrated by the teenagers To control the robot, teenagers chose an action type on
the right side of the tablet illustrated in Figure 2b, e.g. ‘Prompt discussion’ or ‘Elaborate’, and an
addressee on the left side of the tablet before clicking the ‘Send’ button. The whole group was
addressed if no group member was chosen as the addressee. In this work, we focus on learning
‘who’ should be addressed and leave the question of how to clone the action type selection to future
work.

4.2 Perception of the state space

The dataset is comprised of audio data captured through lapel microphones worn by each individual
interacting with the robot. From the audio data stream, we extracted 37 features for each human
group member and three general features describing the group interaction. In particular, our state
includes 13-dimensional mel-frequency cepstrum coefficients (MFCC) and 4-dimensional prosody
features extracted from individual audio signals. The MFCC features are computed every 25ms
with a sliding hamming window of 40ms. In addition, we compute speech intensity through yin-
energy and pitch through the fundamental frequency as well as the first derivative of these features.
Statistical quantities are applied to feature vectors over time to describe speech over the past second.
Specifically, we compute each feature’s mean and standard deviation, resulting in a 34-item feature
vector. In addition to these low-level audio features, we extracted three high-level audio features
capturing: the loudness of the speech in dB, the accumulated relative amount of speech compared
to all speech in the group, and whether the human group member is currently speaking.

The interaction between the human group members is captured in edges between all human group
members. In this work, no features are captured on the edges. The edges are solely used to connect
the individual nodes.
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Table 1: Hyperparameter and model variations used to train the GNN. All network architectures
used within the GNN were LSTMs. The parameters indicate the output size of the LSTM.

1st GNN Layer ϕu 2nd GNN Layer l
ϕe ϕv ϕe ϕv

16, 8 8,4 12,8,6 8,4 4,2 20,30

Table 2: Hyperparameter and model variations used to train the sequential neural network. The
network architectures used on the first layer were LSTMs. For the second layer, we explored using
an LSTM or a dense linear layer.

Layer 1 Layer 2 l
LSTM: 52,26,12 LSTM: 26,13,6, Linear: 26,13,6 10, 20, 30

The global level features are built by a measure of unevenness in speaking amounts, the time since
the last action was taken, and the type of action that the teenager had chosen on the tablet in addition
to the addressee. The measure of unevenness was originally proposed by [11] and is defined by
uneven =

∑
i(spi

r − 1
|P | ), where spi

r represents the relative speech amount of participant pi and |P |
the total number of participants.

4.3 Baseline

As a baseline, we explore the modeling of the group in a single feature vector. The features are
concatenated in a fixed order, resulting in a 114-item feature vector. A neural network is fitted to the
input vector to generate the selected ‘who.’

4.4 Metrics for evaluation

We use macro accuracy to ensure that the accuracy for all four possible addresses is considered
independent of the number of samples present in the dataset. This metric is specifically important
for the test dataset since we only up-sample the training dataset and the test set remains with an
imbalance between choosing the individual group members and the whole group as an addressee.
In all cases, we used the F1-score representing the harmonic mean between precision and recall to
evaluate our models.

5 Experimental Results

We compare the proposed method modeling π : st 7→ at through a GNN to a sequential neural
network. For both approaches, we performed an extensive grid search to find appropriate model
sizes but also hyperparameter settings. Tables 1 and 2 show the explored variations. We used a fixed
seed of 42 from the start of development through training of the networks.

The best-performing model according to the macro average of the F1-score was a GNN with the
output size of ϕe as 16, ϕv as 8, ϕu as 6, and ϕe as 4, and ϕv as 4 on the second layer. The considered
number of time steps l was 30 steps. The result for the top five models of each model variant are
given in Table 3. The five best-performing GNN models outperform all network architectures based
on the single input vector. In addition, all models using GNN use fewer trainable parameters, on
average the GNNs have only 21.6% compared to the size of the sequential network.

6 Limitations

Behavior cloning is a very limited form of imitation learning. Future work might therefore explore if
the benefits of representing groups as graphs and the use of GNN are also effective for other imitation
learning methods. Further, the baseline algorithm suffers from using ordered inputs to the model.
Potentially, using all permutations of order instead of only one could increase the amount of training
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Table 3: Overview on the F1-scores and number of trainable parameters for the five best performing
models per modeling approach. The italic marked numbers correspond to the lowest score among
all classes.

F1-score
per class/model Parameters 0 1 2 3 Macro avg.
ϕ1
e := 16, ϕ1

v := 8, ϕu := 6,ϕ2
e :=

4, ϕ2
v := 4, l = 30

10232 0.379 0.465 0.455 0.578 0.467

ϕ1
e := 8, ϕ1

v := 4, ϕu := 6,ϕ2
e := 4,

ϕ2
v := 4, l = 20

5272 0.358 0.397 0.462 0.571 0.447

ϕ1
e := 8, ϕ1

v := 8, ϕu := 12,ϕ2
e :=

8, ϕ2
v := 4, l = 20

9384 0.341 0.397 0.467 0.636 0.46

ϕ1
e := 8, ϕ1

v := 8, ϕu := 8,ϕ2
e := 8,

ϕ2
v := 2, l = 20

7584 0.322 0.41 0.385 0.654 0.442

ϕ1
e := 8, ϕ1

v := 16, ϕu := 8,ϕ2
e :=

8, ϕ2
v := 2, l = 20

11392 0.33 0.398 0.389 0.611 0.432

LSTM:=52,LSTM=26, l = 20 43372 0.328 0.346 0.441 0.647 0.44
LSTM:=52,LSTM=26, l = 30 43372 0.335 0.371 0.308 0.624 0.409
LSTM:=52,LSTM=26, l = 10 43372 0.279 0.349 0.428 0.639 0.424
LSTM:=52,Dense=26, l = 10 36430 0.342 0.389 0.361 0.567 0.415
LSTM:=52,Dense=26, l = 30 36430 0.260 0.430 0.319 0.586 0.399
Chance level 0.25 0.25 0.25 0.25 0.25

data and, thereby, the outcome for the baseline. However, care must be taken that permutations of
the same data point are not spread over train, test, and validation set. Graph Neural Networks are
order independent and, therefore, are not subject to the problem of ordering input data.

The trained models achieve a macro-accuracy of a maximum of 0.467. This can still be considered
low. To further improve accuracy, a variety of steps could be taken: 1) The dataset only contains
audio data. However, prior work has shown that combining audio and video data can benefit learning
social behaviors. Future work should explore if the combination of audio and video can improve the
accuracy of a similar dataset. 2) Even though teenagers interacted with the robot 48 times for 15
minutes, the dataset can still be considered small. Future work should find methods to collect more
data more efficiently or to further improve the effective use of the available data. 3) The teenagers
can be considered experts for the chosen task of creating a facilitator for ’better’ group interactions.
However, different teenagers might have interpreted the task differently or changed their approach
to the task over time. Therefore, the dataset might not be fully consistent which could explain
the reached accuracy. Future work could consider providing training or involving intense group
discussions so that the groups could reach a consensus about what they want their robot to do.

7 Conclusion

In this paper, we explored the use of Graph Neural Networks to model the behavior of socially intel-
ligent robots that need to decide ‘who’ they are addressing when supporting group interactions. We
build upon a dataset in which teenagers demonstrated social behaviors that can support small-group
education settings and use imitation learning to clone the behavior demonstrated. We compare the
modeling of the behavior policy through a Graph Neural Network with a neural network that is
based on one long feature vector instead of a graph representation as input. Our results show that the
GNN-based approach outperforms the standard neural network and consists of fewer trainable pa-
rameters. Given the sparsity of demonstration of social robot behaviors in human-robot interactions,
GNNs seem suitable not only in terms of their performance but also their network size to model
social robot behavior that supports human-human interactions.
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