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Abstract: How the visual imitation learning models can generalize to novel unseen
visual observations is a highly challenging problem. Such a generalization ability is
very crucial for their real-world applications. Since this generalization problem has
many different aspects, we focus on one case called spatial generalization, which
refers to generalization to unseen setup of object (entity) locations in a task, such
as a novel setup of object locations in the robotic manipulation problem. In this
case, previous works observe that the visual imitation learning models will overfit
to the absolute information (e.g., coordinates) rather than the relational information
between objects, which is more important for decision making. As a result, the
models will perform poorly in novel object location setups. Nevertheless, so far,
it remains unclear how we can solve this problem effectively. Our insight into
this problem is to explicitly remove the absolute information from the features
learned by imitation learning models so that the models can use robust, relational
information to make decisions. To this end, we propose a novel, position-invariant
regularizer for generalization. The proposed regularizer will penalize the imitation
learning model when its features contain absolute, positional information of objects.
We carry out experiments on the MAGICAL benchmark, as well as a real-world
robot manipulation problem. We find that our regularizer can effectively boost the
spatial generalization performance of imitation learning models. Through both
qualitative and quantitative analysis, we verify that our method does learn robust
relational representations.

1 Introduction

Imitation learning is a class of algorithms that enable robots to acquire behaviors from human
demonstrations [1]. The recent advance in deep learning has boosted the development of visual
imitation learning and supported its applications like autonomous driving, robotic manipulation, and
human-robot interaction [1].

In spite of its success, visual imitation learning methods still face many practical challenges. One
major challenge is its ability to generalize to novel unseen visual observations, which is very common
when we deploy the trained models [2, 3]. In the literature, this generalization problem is also
known as the robustness problem. The problem covers many different aspects. For example, here
we can identify two basic generalization capabilities: observational generalization and spatial
generalization (Figure 1). Observational generalization refers to the generalization to novel visual
textures. The changes in background color, object texture, or ambient light in the robotic manipulation
task are examples of observational generalization. Such kind of visual change does not affect the
underlying task structure (e.g., the position of object and targets) and only requires the robot to reason
about semantic meanings correctly. In contrast, spatial generalization refers to the generalization to
unseen setup of objects’ (entities) locations in one task, which instead requires physical common
sense about space and object. Consider the task of letting a warehouse robot move a box to some
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Figure 1: Left and Middle: Two kinds of visual generalization. The examples are based on the
MAGICAL benchmark provided by [2], in which a robot is required to relocate a box to a target
region. The left figure shows an example of observational generalization, in which the only change
during the testing phase is the visual texture of objects. The middle figure shows an example of
spatial generalization. The object setup in the testing phase is unseen. Right: To achieve spatial
generalization, we suggest that absolute information should be removed from the feature while the
relational information should be kept. We propose a novel, position-invariant regularizer for this
purpose.

target region. If we set the initial position of the box to a place that is not covered by the demonstration
dataset, then the imitation learning methods must be able to perform spatial generalization so as
to succeed. In reality, the generalization challenge usually emerges as a combination of different
generalization capabilities. In this paper, we focus on the study of spatial generalization.

For better spatial generalization, the visual imitation learning models should be able to obtain
knowledge about objects and their spatial relations with proper inductive biases. Some work finds that
vanilla deep visual imitation learning models strongly overfit to the absolute position of objects [2],
which suggests that they do not extract relational information of objects to make decisions like
humans [4]. Based on this observation, our main insight into this problem is to explicitly remove the
absolute, positional information from the learned features in the visual imitation learning models. Note
that this does not mean that the decision-making process is not dependent on absolute information.
Rather, we expect that the model can extract the relational information (e.g., distance, direction) from
the absolute information to make robust decisions. To this end, we propose a novel position-invariant
regularizer called POINT. This regularizer will penalize the imitation learning model when it finds
that the learned feature highly correlates with absolute, positional information. As a result, the
imitation learning model has to discover more robust relational features. To validate our idea, we test
the proposed regularizer on the MAGICAL [2] benchmark as well as a real-world robot manipulation
problem. We find that our method can effectively improve spatial generalization performance.
Furthermore, we conduct qualitative and quantitative analysis and find that the imitation learning
models can indeed learn relational features with our proposed regularizer.

To summarize, our contributions in this paper are as follows: (1). We define the spatial generalization
problem of visual imitation learning models and propose a novel position-invariant regularizer called
POINT to tackle this problem. (2). We test our method on the MAGICAL benchmarks as well as
a real-world robot manipulation problem. We find that our proposed regularizer can improve the
spatial generalization performance of previous imitation learning models effectively. (3).Through
qualitative and quantitative studies, we verify that our proposed regularizer does make the visual
imitation learning models extract relational information.

2 Related Work

Imitation Learning Imitation learning (IL) is a classical method to solve sequential decision-
making problems with expert demonstration data. Existing imitation learning methods consist of
two classes of algorithms: behavioral cloning [5] and inverse reinforcement learning [6]. Behavioral
cloning is a supervised learning method that directly fits experts’ actions. Inverse reinforcement
learning instead proposes to infer a reward function from experts’ demonstrations and use it to train
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an RL agent. Both of these methods suffer from the generalization problem. In this paper, we mainly
focus on behavioral cloning since it is simple yet effective in visual domains, and does not involve
dangerous online interactions like IRL [3].

Generalizable Policy Learning The generalization problem of imitation learning has been a long-
standing problem. Since the problem also exists in reinforcement learning and most of the solutions
can be adapted to the case of imitation, we discuss the works from both fields here. One existing
branch of work is the domain randomization [7]. The basic idea of domain randomization is to collect
data from diverse setups, such as different backgrounds and textures. As a result, the trained model
will be able to discover more robust features. Resembling this idea, another line of work tries to solve
this problem with data augmentation [8, 9, 10, 3, 11, 12]. Aside from works using diverse data or data
augmentation, some works also approach this problem by incorporating proper inductive biases into
the design of policy networks [13, 14, 15, 16]. Representation learning methods are another approach
for generalization [17, 18, 19]. We refer readers to [20] for comprehensive knowledge of this field.
Our work differentiates from all these existing works by explicitly defining the spatial generalization
problem and proposing to remove the nonrobust positional information from the representation.

3 Preliminaries

Notations We model the sequential decision making problem as a Markov Decision Process
M = (S,A,R, T ). S is the state space. A is the action space. R is the reward function. T is the
transition dynamics. The agent’s state at timestep t is st ∈ S . The agent takes action at and receives
reward rt = R(st, at). Its state at timestep t + 1 is then st+1 ∼ T (st, at). The objective of the
agent is to maximize the return

∑T
t=0 γ

trt, where γ ∈ (0, 1] is a discount factor. For the imitation
learning problem studied here, the agent has no access to R and T , but it is provided with a fixed
expert demonstration dataset D = {τi}. Here, each τi = (sE0 , a

E
0 , s

E
1 , a

E
1 , ...s

E
T , a

E
T ) is an expert

trajectory that can achieve high performance (return) in M. Therefore, the agent should learn the
behavior by leveraging the given demonstration dataset.

Behavioral Cloning One classical imitation learning algorithm is the Behavioral Cloning (BC). BC
turns the imitation learning problem into a supervised learning problem. It fits the expert’s action ai
given the observation si. For the visual imitation learning problem, the BC model can be divided into
two consecutive parts: a vision encoder fθ (which is usually a convolutional neural network), and a
policy head π. The fθ first encodes si to the feature fi = fθ(si), and the π then uses it to predict the
expert’s action. The BC algorithm minimizes the following negative log-likelihood objective:

LBC = E(si,ai)∈D [− log π(ai|fθ(si))] . (1)

Due to its simplicity, BC is widely used in visual imitation learning. Therefore, we study the spatial
generalization of BC in this paper.

4 Method

4.1 Formulation and Challenges

For the tasks that involve spatial generalization, there usually exist multiple objects in the observed
states, such as the agent, the target object, and the goal. For the state si, we denote each of these objects
in si as oji , and their positions as (xj

i , y
j
i ). Then, our idea can be formulated as the minimization

problem of each I((xj ,yj), f), where I is the mutual information. Note that we use the notation
xj ,yj , f to indicate the corresponding random variables of xj

i , y
j
i , fi. However, this formulation

leads to many practical challenges. First, since each (xj
i , y

j
i ) is not provided directly by si and should

be inferred, we have to either train some object key-point detectors to detect the underlying objects
in the training set, or annotate the objects by ourselves. However, both of these approaches can be
difficult and tedious in practice. Second, even if we have ideal key-point detectors, we have to deal
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Figure 2: Overview of our method. The blue branch above is the common imitation learning (BC)
pipeline. Our proposed regularizer is shown in the light pink box at the bottom. The regularizer first
uses the GradCAM++ algorithm to find out the important areas based on which the latest BC model
makes decisions. Then it samples the coordinates from the discovered important areas and trains a
discriminator network D to calculate whether these sampled coordinates are paired with the feature
fi. The BC model (encoder fθ) is then trained to fool the discriminator D. When the encoder fθ is
able to fool D, the absolute positional information is removed from the feature as desired.

with a hard optimization problem in the summation form
∑

j I((x
j ,yj), f). This can be intractable

when there are many objects in the observed state.

Fortunately, we find that the previous works on the interpretation of deep learning models like
GradCAM provide useful tools to handle these challenges. It can reduce the problem to a much
simpler form. We discuss our observations as follows.

4.2 Problem Reduction with GradCAM

GradCAM is an interpretation method that can tell which part of the image is crucial in the decision
process of a deep learning model. Given a BC model (fθ, π) and input s, GradCAM outputs an
importance heatmap of the same resolution as the input s. The heatmap indicates the importance of
each pixel when we use this BC model for prediction. One nice property of this generated heatmap is
that it is smooth and usually coincides with the meaningful objects in the input s. Therefore, we can
consider the GradCAM as a rough object detector here.

We propose to sample pi = (xi, yi) from the generated heatmap, and then minimize the I(p, f). We
find that this new objective can act as a proxy for the original objective in practice. Concretely, if pi
is always far from a specific object like ok, then we know that ok is irrelevant to the decision process
of the current model. In this case, we conjecture that I((xk,yk), f) should be low enough to meet
our requirement. On the contrary, if pi always coincides with a certain object like ol, then we actually
minimize I(p, f) ≈ I((xl,yl), f) as we want.

4.3 Loss Functions

Now, our remaining work is to reduce the mutual information I(p, f). However, we find that jointly
estimating and minimizing the mutual information in our vision-based tasks is hard in practice. Since
our ultimate goal is to minimize the information of p in f , we instead propose an adversarial training
framework to achieve this goal.
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Specifically, we introduce a discriminator network D to play a two-player min-max game with the
BC model as follows.

min
fθ

max
D

E(si,ai)∼D,(sj ,aj)∼D [logD(pi, fi) + log(1−D(pj , fi))] . (2)

In this min-max game, the discriminator D tries to tell the joint distribution of p and f , denoted as
Pp,f , from the product of their marginal distributions Pp⊗f . Meanwhile, the BC model is trying to
fool the discriminator by removing the information of p from f . Applying the convergence theory
of the generative adversarial network (GAN) [21], we know that when fθ is a global minimizer of
Equation 2, Pp,f = Pp⊗f , which implies that I(p, f) = 0. Therefore this min-max game fulfills our
requirement.

In practice, we train D to minimize the following binary classification loss function:

LD = −E(si,ai)∼D,(sj ,aj)∼D [logD(pi, fi) + log(1−D(pj , fi))] . (3)

However, for the encoder fθ, we find that using −LD as the loss function for training will result in
instabilities. We assume this is because the fi term is present in both of the two terms in Equation 2,
which is different from that in the original GAN objective. Therefore, we propose to use the following
loss function for optimization, which we find works well empirically:

Lreg = E(si,ai)∼D [logD(pi, fi)] . (4)

Combining the BC loss, the loss function to train the fθ and π is then

L = LBC + λLreg = E(si,ai)∼D [− log π(ai|fθ(si)) + λ logD(pi, fi)] . (5)

4.4 Summary of the Algorithm

Algorithm 1: POINT
Initialize parameters of the BC model: fθ,
π, and the discriminator D. Initialize
target model f̃θ, π̃ with fθ, π.

while not converged do
Sample a batch {(si, ai)} from D.
Calculate each importance heatmap
by Hi = GradCAM(f̃θ, π̃, si).

Sample each pi from Hi.
Optimize the BC model by Eqn. 5.
Optimize the discriminator by Eqn. 3.
Periodically update f̃θ, π̃ with fθ, π.

Finally, we put everything together and summa-
rize our algorithm in Algorithm 1. We use Grad-
CAM++ [22], an improved version of GradCAM,
to calculate the heatmap. We find that it can deal
with multi-object observation better than GradCAM.
Similar to the target network in the deep reinforce-
ment learning, we propose to use a target model in
the GradCAM calculation. This target model peri-
odically copies the weights of the latest BC model.
This ensures that the pi terms in Equation 2 will
change slowly throughout the training so that the
optimization of the min-max game between D and
fθ becomes stable.

5 Experiments

In the experiments, we first test the performance of our method on the MAGICAL benchmark. We
study the generalization according to the IID protocol [20]. This means that the training and testing
task distributions are the same, though the test instance will be unseen. Then, we provide an analysis
of our algorithm through both qualitative and quantitive studies. Finally, we extend our method to a
real robot manipulation problem.

5.1 Task Setup

MAGICAL The MAGICAL benchmark simulates a 2D robotic manipulation problem in a ware-
house room. The tasks provided by the MAGICAL involve complex interactions between the agent
and multiple objects, which require effective spatial generalization. In the experiments, we use a
variant of its MatchRegion task. In this task, a robot is required to go across a square room to move
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Figure 3: The MAGICAL tasks used in our experiments. The grey robot is required to move the
target objects (we mark them with red dots) to the target region. The red curve shows a possible plan
to solve the task (the interaction details like releasing box are omitted). The long horizontal nature of
this task brings additional challenges aside from the spatial generalization problem.

Table 1: Evaluation result on the MAGICAL and ProcGen benchmark. We show the average score
on three random seeds. Our method can achieve state-of-the-art results compared with the baselines.

Method Vanilla Dropout Crop Cutout MixReg OREO CLOP Ours

MR-T1 0.09
±0.02

0.28
±0.04

0.42
±0.03

0.19
±0.03

0.26
±0.02

0.21
±0.03

0.16
±0.06

0.63
±0.05

MR-T1D 0.19
±0.06

0.32
±0.11

0.44
±0.03

0.27
±0.03

0.41
±0.10

0.27
±0.06

0.21
±0.02

0.60
±0.08

MR-T2 0.25
±0.03

0.48
±0.03

0.46
±0.04

0.43
±0.05

0.44
±0.05

0.37
±0.05

0.32
±0.07

0.75
±0.07

MR-T2D 0.27
±0.06

0.35
±0.03

0.38
±0.04

0.32
±0.03

0.33
±0.03

0.27
±0.03

0.23
±0.04

0.70
±0.04

MR-T3 0.23
±0.02

0.51
±0.03

0.47
±0.05

0.32
±0.04

0.48
±0.05

0.42
±0.04

0.35
±0.07

0.66
±0.03

some objects to a target region specified by a dashed rectangle. We set up several task instances of the
MatchRegion task: MatchRegion-Target-1, MatchRegion-Target-2, MatchRegion-Target-2-Distract,
MatchRegion-Target-3, MatchRegion-Target-3-Distract. We provide an illustration of these tasks
in Figure 3. For each MatchRegion-Target-X task (MR-TX), there is no distractor object in the
room, so the robot only needs to move all the X objects into the target location. However, for the
MatchRegion-Target-X-Distract task (MR-TXD), there is an additional distractor object in the room.
This object is also randomly placed in the room during testing. The existence of this distractor object
not only increases the risk of learning spurious features but also adds to the difficulty of learning
secure motions. As we will discuss later, even the existence of one distractor object can lead to a
significant increase of generalization difficulty. The study of more distractors is carried out in the
analysis part.

For each of the tasks above, we collect its human demonstration dataset by ourselves. For each
demonstration trajectory, we randomly set up the initial position of the objects, target region, and the
robot. Note that the demonstration dataset provided by the original MAGICAL benchmark uses a
fixed initial position setup. However, we find that this setup is too strict for spatial generalization if
no other dataset or pretraining tasks are available to provide prior knowledge. For MR-T1, we collect
50 trajectories. For each of the other tasks, we collect 100 trajectories. The collection of all these
trajectories takes 2 hours. We also study the outcome of using a different number of trajectories in
the later analysis part.

5.2 Baselines

For the vanilla BC policy, we train an IMPALA [23] policy, whose encoder is a residual convolutional
neural network. We also try vision-transformer [24] and relational network [25] that have relational
biases, but we find that they perform worse than IMPALA and do not report their results here. Then,
we implement the following baselines for comparison: Dropout [26], Crop [8, 27], Cutout [28],
MixReg [10], OREO [3], and CLOP [11].
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OursDropout

Figure 4: The GradCAM++ importance heatmap of the dropout model (left) and our model (right) on
the MatchRegion-Target-1-Distract task. The red region indicates the most important region, while
the dark blue indicates the least important region. The results suggest that the dropout model attends
to the red distractor and is not robust. In contrast, our model is able to attend to correct objects.

5.3 Results

MAGICAL The result on MAGICAL is shown in Table 1. The performance is defined by the
success rate of the trained policy, which is the number of target objects that are successfully transferred
to the target region, divided by the total number of target objects. We observe that our method is
able to achieve state-of-the-art results and outperform the baselines by a large margin. Concretely, it
improves the success rate by about 30%. Besides, we find that most of the previous regularization
methods do increase the success rate of the vanilla version and their results are similar to each other.
This shows that they may solve some common issues in the generalization problem. However, their
performance gap from our method suggests that we tackle a different issue here, which is overfitting
to absolute positions.

5.4 Analysis

Qualitative Results To understand whether our method learns more robust features, we use
GradCAM++ to visualize the learned model. For simplicity, we show the result on the MatchReigion-
Target-1-Distract task. We compare the result of our model to the model trained with dropout here
(Figure 4). We notice that the dropout model tends to focus on the red distractor object rather than
the correct target object. In contrast, our model is able to focus on the correct objects. Even when
the distance between the agent and the object is large, it can attend to the agent and the object
simultaneously. The visualization results suggest that our regularizer indeed leads to robust relational
features even when the vision network IMPALA does not have an explicit relational inductive bias.
This accounts for the improvement of generalization.

Unseen Number of Distractors A robust model should base its decision on robust relational
information. As a result, for the MAGICAL tasks, it should be able to ignore the distractor and
generalize to an unseen number of distractors. Therefore, we test whether our model trained on
MR-T1D (where only one distractor presents) can generalize to MR-T1D with the unseen number of
distractors (e.g., 0, 2, 3). We also compare the results with the previous models. The result is shown
in Figure 5. We find that our model is able to generalize to the case of 0, 2, 3, though the performance
is lower than the case of 1 (training scenario). In contrast, the prior model, such as the dropout model,
fails in these unseen cases totally. This also echoes our qualitative analysis results.
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Number of Demonstrations We also study whether the proposed method works when the amount
of expert demonstrations is limited. For this purpose, we test our method on the MAGICAL with
25%, 50%, 75% of expert demonstrations. We show the averaged performance in Figure 6. We find
that our method can achieve consistent improvement, though the performance decreases as the dataset
becomes smaller. This result suggests that we still require a certain amount of diverse data to achieve
spatial generalization.

5.5 Real-World Experiments

Table 2: The success rate of
the real-world experiments. Our
method is also effective here.
Each test consists of 20 trials.

Method Dropout Ours

0 Dis. Obj 35% 55%
1 Dis. Obj 35% 60%
2 Dis. Obj 20% 50%
3 Dis. Obj 10% 45%

Finally, we test whether our method scales to the real-world
pick-and-place manipulation problem. We extend the MR-T1D
to a UR10 robot arm with a Robotiq parallel-jaw gripper (Fig-
ure 7). As suggested by [29], we use a gripper camera and a
workspace camera to provide observation. For the BC model, we
use two separate IMPALA encoders to process each camera im-
age, concatenate their output features along with the z-coordinate
of gripper, and feed them into an MLP. We use the proposed
regularizer to regularize the workspace branch. We collect 75
human demonstrations for training. We compare our method to
dropout with different numbers of distract objects. The result is
shown in Table 2. Our method also achieves a large improvement
in this problem. The qualitative results are shown in the Appendix
Section 7.1.

6 Conclusion

In this paper, we defined and studied the spatial generalization problem of imitation learning. To solve
this problem, we proposed a novel position-invariant regularizer to remove the absolute positional
information from the features. Through experiments on the MAGICAL benchmark as well as a
robot manipulation system, we confirmed that previous methods do overfit to the absolute position
and showed that our proposed approach can effectively solve this problem. There are many open
questions to answer in our direction: How to combine our method with observational generalization
methods? Can the usage of interpretation methods (GradCAM) here be extended in other ways for
more effective generalization? We believe that answering these questions can open up new possibility
in generalization research.
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7 Appendix

7.1 Qualitative Results of the Manipulation Problem

In this section, we provide some qualitative results of the real-world manipulation problem. Recall
that in this task, the robot is required to move a red cube to a target location specified by a green area.
We show the importance heatmap of the dropout model (Figure 8) and our model (Figure 9). As is
shown in the figures, we find that dropout model tends to attend more to the round distractor object
compared with our model. However, due to the visual complexity, we find that our model sometimes
may attend the shadow in the background.
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Figure 8: The GradCAM++ importance heatmap of dropout model in the real-world manipulation
problem. The dropout model tends to attend the round distractor object.

Figure 9: The GradCAM++ importance heatmap of our model in the real-world manipulation problem.
Our model attends less to the round distractor object. However, due to the visual complexity, we find
that our model sometimes may attend the shadow in the background.
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