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Abstract: Imitation Learning (IL) algorithms such as behavior cloning (BC) do
not explicitly encode the underlying causal structure of the task being learnt. This
often leads to mis-attribution about the relative importance of scene elements to-
wards the occurrence of a corresponding action, a phenomenon termed Causal
Confusion or Causal Misattribution. Causal confusion is made worse in highly
complex scenarios such as urban driving where the agent has access to a large
amount of information per time-step (visual data, sensor data, odometry, etc.).
Our key idea is that while driving, human drivers naturally exhibit an easily ob-
tained, continuous signal that is highly correlated with causal elements of the state
space: eye gaze. We collect human driver demonstrations in a CARLA-based VR
driving simulator, DReyeVR, allowing us to capture eye gaze in the same simula-
tion environment as other training data commonly used in prior work. Further, we
propose a contrastive-learning method to use gaze-based supervision to mitigate
causal confusion in urban driving IL agents — exploiting the relative importance
of gazed-at and not-gazed-at scene elements for driving decision making. We
present preliminary quantitative results that suggest the promise of gaze-based
supervision in improving the driving performance of IL agents.

Keywords: Causal confusion; causal misattribution; Eye gaze; Urban Driving;
Imitation Learning; Behavior Cloning

1 Introduction

Imitation learning is a popular method for learning urban driving policies due to its ease of imple-
mentation and de-coupling of the data collection/action step and the training step by allowing offline
learning of control, among other factors.

In the original paper identifying casual confusion [1], the authors use the example of the realistic
driving setting to illustrate this phenomenon where, counter-intuitively, access to more information
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yields poorer task performance by the imitation learning agent. In the aforementioned example,
an IL agent learns from demonstration images from inside the cab of a vehicle with and without a
brake light indicator on the dash. In the case where a brake light is present and always on when the
brake is applied, the agent may learn to brake only when the brake light indicator is on. This is an
undesirable misattribution of cause and effect.

Several additional works exist in which recurrent/history-based imitation models perform worse
than their counterparts without access to this historical information. For instance in [2], imitation
learning policies are trained with and without “history” information about the trajectory of the car in
the past. The model with history has better performance on held-out demonstration data, but much
worse performance when actually deployed which is an indication that causal confusion is occurring.
Another example is in [3] —“In particular, we identify a typical failure mode due to a subtle dataset
bias: the inertia problem. When the ego vehicle is stopped (e.g., at a red traffic light), the probability
it stays static is indeed overwhelming in the training data. This creates a spurious correlation
between low speed and no acceleration, inducing excessive stopping and difficult restarting in the
imitative policy.”

2 Causal confusion in urban driving

Figure 1: Salience map generated by using blur-based saliency [4]. Clockwise starting from top-left:
left-camera image with overlaid salience; center-camera image with overlaid salience; right-camera
image with overlaid salience; next waypoint (in heatmap form) with overlaid salience; next waypoint
(in heatmap form) overlaid on center image; quartered salience image to show scale of relative
salience across inputs (top-left corresponds to left, top right to center, bottom right to waypoint,
bottom left to right) This scene depicts the instant a vehicle comes to a stop after which it fails to
restart. NOTE: the bulk of the salience weight as shown by the quartered image is at the base of the
traffic light in the center image and the waypoint.

In particular, we consider the popular and well-established Learning by Cheating (LBC) [5] model
for autonomous urban driving in CARLA. This method uses a 2-step approach where a teacher
model is first trained with access to ground truth, overhead-view semantic segmentation maps around
the ego-vehicle (approaching perfect perception). Then, this agent is used as an oracle to train a
sensorimotor agent which only has access to RGB (left/center/right views) sensor data as well as
a high-level command from a global plan. We use the latest author-provided code and model [6]
which is a slight deviation from the original paper [5]. Of particular note, the LBC sensorimotor
model takes a ten channel image as input where 9 channels correspond to three RGB images (left,
center, right) and the last is a heatmap with the only “hot” region being a Gaussian distribution
centered at the next waypoint in the frame of the center camera.
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As one may expect, the LBC model also shows symptoms of suffering causal confusion. Some qual-
itative descriptions from the authors can be found in [7]: “I believe that the network has some issues
with starting/stopping”. These problems seem to occur especially in the absence of surrounding
vehicles which may be used as causal cues for accelerating out of a stop.

We especially notice traffic light infractions where the LBC agent either does not stop for a red light
or fails to restart after stopping at a red light. We also notice cases where the agent stops at a red
light but restarts when opposing traffic is moving, even though the red light has not changed.

2.1 Saliency-based causal confusion diagnosis

To investigate the relative importance of regions of the input state space in making decisions, we
used saliency methods to investigate the decision making process of the LBC model. Specifically,
we used a modified version of the blur-based saliency method by Greydanus et al. [4]. This saliency
method is network agnostic and works by blurring different regions of the given visual input and
measuring the difference in output with the original input. This method reasons that regions which,
when blurred, cause the greatest difference in output are the most salient.

Using this blur-based saliency measure, we are able to generate saliency maps for the LBC method
such as in Fig 1.

3 Method

3.1 Gaze data collection

(a) Physical setup with participant
driver in driving pose, alongside
experimenter’s setup monitoring the
simulation.

(b) First person DReyeVR simulator perspective during the same
episode with eye reticle (red crosshair) denoting eye gaze on in-world
navigational sign that gives drivers route direction. The crosshair is for
illustration only (not shown in VR).

Figure 2: Example experimental setup during gaze data collection

Human demonstration data was collected in the DReyeVR simulator [8], a modified version of
the CARLA simulator to enable human driving in VR. DReyeVR also enables the collection of
driver eye gaze as they use the simulator. Drivers were tasked with completing a navigational sign
following task (see Fig. 2b) and their driving actions (steering, throttle, brake) as well as eye gaze
movements were recorded.

Eye gaze was collected at the simulator rate, about 50Hz. Eye gaze can be a noisy and high fre-
quency signal and so, we performed pre-processing in the following manner. First, driver eye gaze
movements were classified into low-velocity fixations and high-velocity saccades using I-BMM,
an off the shelf gaze event classifier [9]. Then, saccades were discarded (during these, drivers are
moving their eyes between fixation points and cannot pay attention to the point of regard). Finally,
fixations were aggregated into attention maps by initializing a Gaussian distribution centered at each
fixation point and aggregating these across a window of gaze history. This eye gaze was obtained in
the form of 3D gaze coordinates in the virtual world, allowing us to project the gaze point-of-regard
to virtual cameras in the world (such as the left, center, right images taken in as input by LBC).
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Figure 3: Gaze-based supervision via triplet loss. Input data points are represented with center
image but all three images are correspondingly blurred. See Fig 4 for the full input triplet in greater
detail.

Figure 4: Example triplet in more detail with gaze-contingent blur applied. In order (top-bottom):
Anchor inputs (left, center, right image - no blur), Negative image (blur in attention regions), Positive
image (blur in non-attention regions)

We collected data from N = 7 drivers, all of whom had held a US driver’s license for more than
one calendar year. Each participant drove 5 routes, with the first being for acclimatization to the VR
simulator (this data was not used). However, 3 participants were unable to complete all 4 routes due
to motion-sickness in the simulator and 4 routes had to be discarded due to improper data recording.
In total, we have 17 routes with about 4 minutes of driving data each or about 70 minutes of data
total. This is much lower than the auto-generated data used to train the LBC models, which is
upwards of 300 minutes.

3.2 Gaze-based supervision via contrastive loss

As Fig. 1 shows, a large portion of the blur-based salience lies on the base of the traffic light – i.e.
when blur is applied to this region, this causes the largest change in the LBC model’s predicted
output.

Our simple idea to provide gaze supervision comes from mitigating this misplaced salience. We
use a triplet loss and gaze based salience as shown in Fig. 3. In our formulation, an unblurred set
of input images (left, center, right, waypoint) constitutes the anchor data point. The negative input
is constructed by applying Gaussian blur (same parameters as [4]) to important scene locations
(indicated by attention maps) in the same set of images. The corresponding positive point has the
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same blur applied to the unimportant scene regions (complement of attention maps). The reasoning
for this formulation is as follows: the most important regions for decision making for actions lie in
the gazed-at regions (as indicated by attention maps) and the non-gazed at regions do not contain
information that would change the driving decision. The triplet loss minimizes the distance of the
anchor and the positive point while maximizing the distance of the anchor and the negative point.
Hence, our loss enforces that visual inputs that are blurred in locations that are unimportant to
driving should lead to a smaller change in network output than the same blur applied in important
regions. An example triplet is shown in Fig. 4.

3.3 Fine-tuning details

As explained in the paper [5], LBC training takes place in two steps: first, by learning a privileged
agent that learns to drive with perfect sensor information and then, by using it to supervise a senso-
rimotor that learns to ”see” via RGB images. In this work, we focus primarily on mitigating causal
confusion in the sensorimotor model since that is the one that learns the task with sensory inputs
(and greater potential for causal confusion) and because it is the final deployed model. We also
focus on fine-tuning the sensorimotor model rather than training from scratch since the amount of
data with gaze-supervision is much lower than the auto-generated driving data.

In this work, we show results of fine-tuning the sensorimotor agent using either the driving supervi-
sion loss used by the LBC authors [6] (LBC) or via the gaze based triplet loss (Triplet).

In models that use the LBC loss, the choice of privileged model to use as the teacher to the sensori-
motor model during training is an important area of consideration. This teacher model could either
be trained using the same data as the corresponding sensorimotor model (self-trained) or we could
simply use the best performing privileged agent model released by the authors of LBC (LBC best).
We show preliminary results using both types of teacher models in Table 1.

3.4 Quantitative evaluation

To evaluate our fine-tuned models, we used the validation set from the CARLA leaderboard bench-
mark [10]. This set contains 26 driving routes spread over 3 virtual towns, of which 1 is unseen
in the training data. We use the DrivingScore metric from the Carla leaderboard which is cal-
culated as the average of RouteCompletionPercentage × InfractionScore per route. Here
RouteCompletionPercentage is the percentage of the route completed by the driving agent and
InfractionScore is a number in [0, 1] that encapsulates the number of infractions committed by
the driving agent. InfractionScore starts at 1 for each route and is progressively decreased per
infraction (we refer readers to [10] for details). Hence, the maximum achievable DrivingScore
would be 100.

Model Sensorimotor Teacher Training Loss DS
Type weights model data used (↑)
pre-trained LBC [5] self-train LBC best RBE LBC 16.4

human data only (scratch) self-train self-train DRVR LBC 1.68
human data only LBC best LBC best DRVR LBC 4.93

human + expert mix (scratch) self-train self-train RBE + DRVR LBC 7.05
human + expert mix LBC best LBC best RBE + DRVR LBC 20.28

gaze-based triplet only LBC best N/A DRVR Triplet 5.41

Table 1: Preliminary experimental results on the Carla AD leaderboard val set. Abbreviation guide:
LBC best best teacher model provided by LBC authors [5]; RBE - demonstrations from rule based
expert; DRVR - demonstrations from human drivers in the DReyeVR simulator
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4 Discussion & Future work

From our preliminary results, the first noticeable trend is driving performance degradation due to
fine-tuning on solely the human demonstrator driving data (DRVR). This may be due to the much
smaller size of the DRVR data compared to that auto-generated by the rule-based expert (RBE).
However, using mixed RBE + DRVR training data using the LBC loss does give much better driving
performance. In the fine-tuning case, this even outperforms the pre-trained LBC model.

Promisingly, finetuning the sensorimotor model using triplet loss leads to better performance than
both training from scratch and finetuning using the LBC driving loss. However, this is ongoing work
and several paradigms need to be explored before being able to make useful conclusions from this
line of research inquiry.

First, the RBE data does not contain associated gaze data, hence we cannot use RBE+DRVR data
directly with the gaze-based triplet loss. However, we do plan to investigate the efficacy of mixed
RBE+DRVR data in a custom training regime where we also mix the LBC and Triplet losses. In
this paradigm, the LBC supervision loss would be calculated using all of the data but the triplet loss
would only be calculated for samples which have associated gaze data with them.

Further, in the construction of triplets for gaze supervision, deleting objects that are not gazed at
is a more direct way of enforcing their absence in the positive sample than simply blurring them
out. This deletion could be done at the simulator level while generating training data, or via partial
convolutions to block out certain image regions as in [11]. We would like to explore more explicit
construction of triplets of this manner, in the future.

Finally, in addition to quantitative evaluation via driving scores, we plan to qualitatively evaluate the
mitigation of causal confusion by investigating the stop/start issue described in Sec. 2.
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