Learning Abstract Representations of
Agent-Environment Interactions

Tanmay Shankar Jean Oh
Robotics Institute Robotics Institute
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA, United States Pittsburgh, PA, United States
tanmay.shankar@gmail.com jeanoh@cmu.edu

Abstract: In learning from demonstration, tasks are generally well defined and
known to a learner, e.g., opening a door. In this paper, we present an unsu-
pervised approach for learning abstract representations of common manipulation
tasks such that, given a demonstration of an unknown task, a high-level task
strategy can still be transferred from a teacher to a learner. Building on prior
work of learning temporal abstractions of agent behaviors, e.g., trajectories of an
arm, we propose to extend these to temporal abstractions that represent how an
agent interacts with the objects in their environment, e.g., a robot pushing a door.
We show promising results that suggest such interaction abstractions could pro-
vide a unified basis for representing human and robot task strategies presented at
https://sites.google.com/view/interaction-abstractions potentially facilitating new
ways of learning from demonstration.
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1 Introduction

Consider an amateur cook learning a new dish by watching a chef demonstrate how to make a similar
dish on YouTube; even amateurs can achieve excellent results doing so. Humans owe this aptitude
for ‘learning by imitation’ to reasoning abstractly about human behaviours—including their own—and
the task at hand. People ignore irrelevancies (ex. differences in kitchens), focus on patterns envi-
ronmental change needed (ex. steps of recipes), and skill-sequences that effect these environmental
changes (ex. techniques of chefs). In doing so, people abstractly represent task strategies; i.e.,
the sequence of skills and patterns of environmental changes needed to accomplish the task. The
prospect of equipping robots with these abilities is enticing. Such abstract representations of task
strategies would allow us to view human and robot task strategies from a unified perspective. This
in turn would enable robots to learn to solve various tasks by watching human demonstrators solve
similar tasks in different environments from their own.

The robot learning community has made efforts towards realizing various parts of this vision.
Sivakumar et al. [1], Arunachalam et al. [2], Ye et al. [3], Qin et al. [4], Wu et al. [5] engineer
mappings between human and robot state to facilitate imitation of human videos. Shankar et al.
[6], Smith et al. [7] have sought to learn such correspondences between humans and robots without
manual specification, resorting to representation alignment machinery such as Zhu et al. [8], or unsu-
pervised domain adaptation machinery [9, 6]. While successful in their own right, these approaches
seek to transfer individual states or actions across domains, and lack a higher level understanding of
the behaviors at hand. The community has attempted to introduce such higher level understanding
in the form of abstractions. Gelada et al. [10], Li et al. [11], Zhang et al. [12], Hansen-Estruch
et al. [13] works on learning state abstractions that facilitate ignoring irrelevant components of en-
vironments, and making analogies across various environment and task instances [13]. Sutton et al.
[14], Eysenbach et al. [15], Sharma et al. [16], Shankar et al. [17], Shankar and Gupta [18], Krishnan
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et al. [19], Fox et al. [20] learn temporal abstractions of agent behavior, that facilitate reasoning over
longer term behaviors.

Despite making significant advances in building high-level understanding of agent behavior,
these works a significant pitfall. These works either learn abstractions over agent behaviors
[15, 16, 17, 18, 19, 20], or over changes in environment state [13], but do not consider both to-
gether. While Sutton et al. [14], Sharma et al. [16] maintain notions of pre-conditions and effects,
these notions are often hand-crafted into the abstractions, or are simplistic conditions on state. Fur-
ther, approaches that learn temporal abstractions of behaviors are often unaware of the patterns of
environmental and object state change they induce (i.e., their effects). Conversely, most environ-
mental state abstractions are unaware of the behaviors that caused them. As a result, traditional
approaches that use such abstractions to solve tasks typically need to perform a search for an appro-
priate sequence of abstractions to solve the task - a difficult problem that requires highly engineered
heuristics to solve.

In this paper, we argue that it is therefore important to understand interactions between agents (hu-
mans and robots alike) and their environments fogether. To do so, we build temporal abstractions of
interactions. These interaction abstractions differ from their behavioral and environmental counter-
parts in that they maintain explicit notions of an agent and environment (or objects in it). By doing
so, we hope to equip agents with a high-level understanding of the effects of their behaviors, and
therefore an understanding of which of their behaviors are needed to affect desired environmental
changes. By then aligning understandings of effects of human and robot behaviors, we hope to
transfer strategies of solving tasks from human demonstrators to robots. We do so by first applying
a robot skill learning framework [18] to learn temporal abstractions of environmental state. We then
combine this with the original robot skills, to build a framework for interaction abstractions. We
show promising initial results that these interaction abstractions would aid transfer between human
and robot task strategies.

2 Approach

2.1 Background - Learning Behavioral Abstractions

We first describe an important building block of our work—a behavioral abstraction framework.
We consider behavioral abstractions, or skills, are a representation of an agent acting consistently
for a temporally extended period. Examples of such skills include a person stirring (a pot), or
a person flipping an object such as a pancake, etc. In this paper, we specifically consider the
behavioral abstraction framework of Shankar and Gupta [18]; though any such framework could
be used [15, 21, 19, 17, 22]. Shankar and Gupta [18] learn behavioral abstractions, or skills,
of agents from demonstrations in an unsupervised manner. Their method first represents robot
skills as continuous latent variables z" (subscript r depicts of the robot), and introduce a Temporal
Variational Inference (TVI) to infer these skills or latent variables. Consider an agent trajectory
T ={s},ay,...s_q,al_q, s}, where s} is the state of the agent, a} is the agent’s action at time
t, and n is the length of the trajectory. TVI trains a variational encoder ¢"(z|7") that takes as input
a agent trajectory 7" and outputs a sequence of skill encodings 2" = {27, 25, ...z}, }, where k < n is
a learnt number of skills executed. TVI also trains a latent conditioned policy 7 (als, z") that takes
as input robot state s, and the chosen skill encoding z, and predicts the low-level action a that the
agent should execute. TVI trains ¢" and 7 to reconstruct the actions observed in the trajectory 7.
We direct the reader to [18] for a thorough description of their skill learning approach.

2.2 Building Temporal Abstractions over Environment State

In order to build temporal abstractions of interactions between agents and environment state, one
also needs temporal abstractions of environment state. These abstractions exemplify patterns of mo-
tion that objects often exhibit, e.g., a bottle cap rotating and moving up away from the bottle, or a
kettle being tilted downwards to pour from it. One can imagine how such abstractions are useful —
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Figure 1: Overview of our approach. We learn a robot skill encoder ¢" and an environmental
abstraction encoder ¢°, that learn representations of behavioral and environmental abstractions 2"
and z¢ respectively. We then combine 2" and 2 into a joint interaction abstraction z/. We can then
condition robot policy 7 on interaction abstraction z7, in addition to state inputs s” and s°.

they could be used to specify steps that need to happen in a kitchen recipe, or more generally, de-
scribe changes in environmental state that need to occur. In this section, we describe how we adapt
the behavioral abstractions of [18] to learn temporal abstractions of environment state. Consider a
corresponding trajectory 7¢ = {s,a§,...s5_1,a%_1, s5} of environment state s° over time. Here,
ay represents the change in environmental state at a given timestep ¢, rather than a notion of agent
action. We can construct an equivalent environmental variational encoder ¢¢(z|7¢), that predicts
an equivalent sequence of latent encodings 2¢ = {z{, 25, ..., 2}, }, that represent temporally abstract
changes in environmental state. We can train an equivalent environment state “policy” 7°, condi-
tioned on the desired environmental abstraction z¢. As in TVI, we train ¢ and 7° to reconstruct
the change in environmental state a; at every timestep. We present preliminary results showing the
efficacy of these environmental state abstractions below.

2.3 Building Interaction Abstractions from Behavioral and Environmental Abstractions

In order to develop a high-level understanding of how agents interact with their environments, we
would also like to build temporal abstractions of interactions. Examples of such abstractions would
include using a cutting skill to chop an onion, or using a flipping skill to turn over an omelette. To
reiterate, the proposed interaction abstractions differ from behavioral and environmental counterpart
in that interaction abstractions maintain explicit notions of an agent and environment (or objects
in it), e.g.stirring a pot, or flipping a pancake. In contrast, prior behavioral abstractions [18, 19]
only maintain implicit notions of objects, e.g., stirring or flipping skills. As a result, we view the
interaction abstractions from an active perspective; i.e., that the explicit agent effects changes on its
environment. In contrast, we view the environmental abstractions above from a passive perspective,
in that the state of objects in an environment changes, agnostic of what agent effects these changes.

Given behavioral abstractions z” and environmental abstractions z¢, we combine these abstractions
to form interaction abstractions z7. We explore several options of combining these abstractions; the
simplest is to simply concatenate them, i.e., 27 = [2"2¢]. These interaction abstractions thus contain
information of both the agent skill being executed, and its (desired) effect on the environmental state.
We can inform the policy of this desired agent skill and desired pattern of environmental change by
conditioning the policy 7 on 27 rather than on 2" alone, i.e., 7 = 7(als, 27).

We now describe the pipeline of how we construct interaction abstractions z7. We first sample
agent and environmental state trajectories 7" & 7¢ from the appropriate dataset. We then pass these
trajectories through their corresponding encoders ¢” and ¢, to retrieve latent encodings of these
abstractions, {27, 25, ..., 2. } & {25, 25, ..., 2§ } respectively. We concatenate these encodings to form
latent encodings of the interaction, {z{7 z§7 e zi} We then condition the agent policy 7 on this
desired interaction abstraction {2 }%_.. During inference, given a pattern of desired interactions,
{2{, 2}, ...,z }, we can condition the agent policy on these desired interactions 7 (a|s, 27 ), and query
it at the current state s”, s¢, for the next agent action to execute a”. We depict this pictorially in fig. 1.
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Figure 2: Depiction of preliminary results on both the environmental abstractions (left column),
and the interaction abstractions (right column), across Roboturk dataset (top row) and Robomimic
dataset (bottom row). These embedding spaces depict abstract representation spaces that model
both agent behaviors and the their effects on the environment. In all four cases, note the clustering
of similar motions into similar parts of their respective latent spaces. For dynamic versions of these
spaces, view https://sites.google.com/view/interaction-abstractions.

During training, we can update encoders ¢" & ¢, and policy 7, to optimize a reconstruction loss
on the state changes observed in trajectories 7" & 7¢. We specifically optimize the likelihood of
observed state changes, as in TVL.

3 Experiments

We would like to answer the two following questions with respect to our proposed abstractions.
Firstly, can the learnt environmental and interaction abstractions accurately model interactions be-
tween agents and their environments? Second, do the learnt abstractions spaces show promise in
facilitating downstream task strategy transfer from humans to robots? In this section, we present
preliminary results towards answering these questions.

3.1 Datasets and Experimental Setup

We present results on the Roboturk dataset [23] and the RoboMimic dataset [24], datasets of tele-
operated demonstrations collected on the Sawyer robot and the Franka Panda respectively. In ad-
dition we also present results on the GRAB dataset [25], which consists of humans manipulating
various objects themselves. These datasets consist of their respective agents interacting with a va-
riety of different objects, such as milk cartons, cereal, bread, cans, differently shaped pegs, tools,
etc. Collectively, these datasets span a variety of interactions, including lifting, moving, releasing,
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Figure 3: Qualitative results on environmental abstractions. We show two object state demonstra-
tions for each dataset, (labelled ground truth), and their corresponding reconstructions via our learnt
abstractions (labelled reconstructions). Note the accuracy of the reconstructions in capturing the
object trajectory despite the low dimensional nature of the latent encoding.

RoboMimic Dataset
Carton being moved right
Ground Truth  Reconstruction
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pushing, rotating, reorienting, efc. We present both qualitative and quantitative results for both the
environmental and interaction abstractions.

In each case, we have access to the joint-state of the agents, 8 joint angles for the robots, and a 24
dimensional joint state for the humans. We also make use of the object state in these trajectories,
consisting of 6 object pose. In each case we assume the “actions” of the agents are joint state
velocities.

3.2 Preliminary Qualitative Results

We first present qualitative results; in the form of visualizations of both individual abstractions
and the representation spaces Z¢ & 77 of abstractions. We provide static versions of these
visualizations in our main paper, and include dynamic visualizations on our project webpage,
https://sites.google.com/view/interaction-abstractions.

3.2.1 Environmental Abstractions

We first present preliminary results on applying the behavioral abstraction framework of Shankar and
Gupta [18] to learning environmental abstractions. To do so, we consider object state trajectories
present in the various datasets, consisting of 6-D pose (position and orientation) of the object. We
provide these object state trajectories as input to TVI [18]. TVI then provides us with a latent
space Z°, that represents temporal abstractions of object state. Each z° in this space Z° represents a
different pattern of environmental state. In this case, since we represent environment state as object
state, each z® may be thought of as a different pattern of object state.
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Figure 4: Qualitative results on interaction abstractions. We show two demonstrations for each
dataset of the respective robot interacting with objects (labelled ground truth), and their correspond-
ing reconstructions via our learnt abstractions (labelled reconstructions). We visualize the same
tasks as in fig. 3, for reasons in section 3.4.2. Note how the robot skills executed lead to the environ-
mental abstractions depicted in fig. 3. The reconstructed space is able to capture this, and therefore
the overall pattern of motions of agent and environment.

We present a 2D visualization of this space on the left in fig. 2, produced via T-SNE [26]. Note the
clustering of similar patterns of motion of objects into similar parts of the latent space. We manually
annotate the various clusters of environmental abstractions present. Our environmental abstraction
space is able to capture a variety of different object motions, including pushing, lifting, and moving
objects.

In addition, we also visualize individual samples of abstractions present in the space Z¢, in fig. 3
and https://sites.google.com/view/interaction-abstractions. We visualize ground truth trajectories
(of a peg being moved forward, and a milk carton being moved to the right), and their respective
reconstructions via their learnt abstraction encodings z¢. Notice the high fidelity reconstructions of
the trajectories, and the similarity in trend of object motions in the ground truth and reconstructed
trajectories. We note that while these results are to be expected from TVI [18], this validates the
soundness of the learnt environmental state abstractions.

3.2.2 Interaction Abstractions

Having verified the soundness of environmental abstractions, we may now analyze how well they
combine with prior behavioral abstractions (i.e., robot skills) to form our proposed interaction ab-
stractions. To do so, we feed in trajectories of agent and object state to their respective encoders q"
& q°, retrieving their predicted latent encodings 2" & z respectively, concatenate these encodings
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Table 1: Comparison of reconstruction error of environmental and interaction abstractions against
baseline approaches for reconstructing environmental and joint agent environmental state respec-
tively. Lower is better.

Environmental State Agent & Environment State
Dataset LSTM VAE EnvAbs LSTM VAE IntAbs Joint IntAbs Factored
(Ours) (Ours) (Ours)
RoboTurk 1.40 1.83 0.46 1.78 1.93 0.72 0.62
RoboMimic 1.33 1.47 0.38 1.58 1.75 0.84 0.58
GRAB 1.16 1.38 0.57 2.30 2.24 0.93 0.80

to form a interaction abstraction encoding 27, and finally reconstruct the joint agent-object trajec-
tory 77 from this encoding. As above, each z7 in the interaction abstraction space Z’ represents a
different pattern of interaction between agent and object state.

As above, we present a 2D visualization of this latent interaction abstraction space on the
right of fig. 2, also produced by T-SNE. Dynamic visualizations of this are available at
https://sites.google.com/view/interaction-abstractions. As in the case of environmental abstractions,
the latent space is clustered based on the nature of interactions taking place. In each cluster, the
robot and object undergo common patterns of change of state. There is a single cluster that models
no interactions between the agent and the robot (i.e., the robot is reaching towards the object and has
not made contact with it yet). There are other clusters modeling interactions with the object in-hand,
such as moving or lifting the objects. There are additionally clusters where the agent is making or
breaking contact with the object, such as the robot releasing the object cluster in the top right. We
emphasize that our method is able to capture such clustering of interactions despite being trained
without any supervision over the types of interactions, robot skills, or object motions.

In addition to this, we also present visualizations of individual interactions present in the space 7/
in fig. 4, and in https://sites.google.com/view/interaction-abstractions. For ease of comparison, we
visualize the same trajectories as visualized in fig. 3, i.e.the robot moving a peg forward, and the
robot placing the milk carton to the right. Note that in contrast with the above environmental ab-
stractions, where we refer to these object moiton patterns from a passive perspective, here we think
of the interaction abstractions as active abstractions, where the robot effects desired change in its
environment. We observe in fig. 4 that the interaction abstractions in each case capture both the
robot skill (or behavioral abstraction) that is executed by the robot, as well as the effect it has on
environmental state. Particularly, we observe the robot executing skills that result in the environ-
mental state changes observed in fig. 3. Together with our other qualitative results, this suggests our
proposed interaction abstractions are capable of abstractly modelling both agent behavior, and their
effects on environmental state.

3.3 Preliminary Quantitative Results

In addition to the above qualitative results, we also present preliminary quantitative results to further
verify the ability of our approach to abstractly model interactions. We do so by measuring the re-
construction error of both the environmental and interaction abstractions, and comparing this against
other baseline approaches of predicting trajectories of environmental and joint agent-environment
state respectively. We present these results in table 1. Note that we do only compare approaches
reconstructing environmental state amongst one another, and not against approaches reconstructing
joint agent-environmental state, and vice versa.

We consider two variants of our interaction abstraction approaches. The first is a straightforward
application of TVI [18] to reconstructing joint agent-environmental state, represented by joint latent
encodings (rather than the factored encodings presented in section 2.3). We term this approach as
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IntAbs-Joint. The second is the factored version of interaction abstractions present in section 2.3,
termed as IntAbs-Factored. We compare these approaches against two baselines; an auto-regressive
LSTM trained to reconstruct trajectories, and a VAE approach that uses a single latent variable
(across all timesteps) to represent the trajectory.

In the case of environmental state, we observe that our environmental abstractions are more accurate
predictors of trajectories than the flat baselines, across all 3 datasets. This trend is mirrored in
the case of reconstructing joint agent-environment state, where both interaction abstractions also
perform better than the baselines. Further, we observe that our factored interaction abstractions are
also able to outperform the joint interaction abstractions, suggesting that our choice of modelling
the agent abstractions and environmental abstractions with separate latent variables is appropriate.

3.4 Suitability for Transfer

We now seek to verify whether these abstractions also exhibit characteristics suitable to transfer
human to robot strategies.

3.4.1 Factored Encodings for Transfer

We first consider suitability for transfer along the architectural axis. By choosing to adopt a fac-
tored encoding of the agent and environmental abstractions fig. 1 rather than a joint encoding, our
approach possesses a compositional architecture. Consider transferring from a human to robot task
strategies. After training interaction abstractions for both human and robot agents Z7-hvman &
Z7-mobo respectively, we believe we can then transfer between these human and robot interaction
abstractions, by swapping out the particular agent encoder ¢" for that of another agent q’“/. While
this also requires the alignment of the environmental abstractions associated with both agents, this is
a fairly straightforward problem to solve, using machinery such as Cycle-GAN Zhu et al. [27] etc..

3.4.2 Unified Perspectives of Skills and Task Strategies

Our approach can represent similar interactions across different agents well, as exemplified by the
similarity of representations of similar tasks across datasets in fig. 3 & fig. 4. By aligning represen-
tations of environmental abstractions across these agents (a relatively straightforward problem given
machinery like Zhu et al. [8]), we could view such interactions from a unified perspective.

Consider two agents interacting in two domains Dy & Ds. Given an alignment (or mapping)
f(zp,) — 25, of environmental abstractions across domains D; and Dy, we may align the in-

. . J ] . . e e . . . .
teraction abstractions zy, & zp,, associated with zf, & 27, respectively using the same mapping;

thus facilitating easy transfer of task strategies across these domains.

3.4.3 Visualization of task strategies

To further demonstrate the ability of our approach to represent task strategies, we also provide
visualizations of task strategies in the latent representation space of abstractions. To do so, we first
present a 2-D projection of the latent space Z7 (as in fig. 2). Given a representation {z1, 23, ..., z}
of a task strategy, we then visualize this sequence of ztA’s overlaid in space Z’/. We present these
results at https://sites.google.com/view/interaction-abstractions due to space constraints.

4 Conclusion

In this work, we present a framework for learning abstract representations of interactions between
agents and their respective environments. We use these interaction abstractions to represent task
strategies adopted by agents. These interaction abstractions could also model forward and inverse
dynamics between agents’ skills and their effects on the objects in their environments, and transfer
task strategies from human demonstrators to robots. We believe this could enable robots to adopt
the task strategies of human demonstrators, therefore broadening their repertoire of tasks.
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